Решите графически уравнение ctgx 1 ctgx

Простейшие тригонометрические уравнения с тангенсом и котангенсом

Чтобы уверенно решать простейшие уравнения с тангенсом или котангенсом нужно знать значения стандартных точек на круге и стандартные значения на осях тангенсов и котангенсов (если в этом материале есть пробелы, читайте « Как запомнить тригонометрический круг »).

Алгоритм решения простейших уравнений с тангенсом

Давайте с вами рассмотрим типичное уравнение, например, \(tg⁡x=\sqrt<3>\).

Пример. Решить уравнение \(tg⁡x=\sqrt<3>\).

Чего от нас здесь хотят? Чтобы мы написали все такие значения угла в Пи, для которых тангенс равен корню из трех. Причем написать надо именно все такие углы. Давайте нарисуем тригонометрический круг и ось тангенсов…

…и обозначим то место на оси, куда мы должны попасть в итоге.

Теперь найдем через какие точки на окружности мы должны идти, чтобы попасть в этот самый корень из трех –проведем прямую через начало координат и найденную точку на оси тангенсов.

Точки найдены. Давайте подпишем значение одной из них…

…и запишем окончательный ответ – все возможные варианты значений в Пи, находящиеся в отмеченных точках: \(x=\frac<π><3>+πn\), \(n∈Z\).

Замечание. Вы, наверно, обратили внимание, что в отличие от уравнений с синусом и косинусом , здесь записывается только одна серия корней, причем в формуле добавляется \(πn\), а не \(2πn\). Дело в том, что в любом уравнении с тангенсом решением получаются две точки на окружности, которые находятся друг от друга на расстоянии \(π\). Благодаря этому значение обеих точек можно записать одной формулой в виде \(x=t_0+πn\), \(n∈Z\).

Пример. Решить уравнение \(tg⁡x=-1\).

Итак, окончательный алгоритм решения подобных задач выглядит следующим образом:

Шаг 1. Построить окружность, оси синусов и косинусов, а также ось тангенсов.

Шаг 2. Отметить на оси тангенсов значение, которому тангенс должен быть равен.

Шаг 3. Соединить прямой линией центр окружности и отмеченную точку на оси тангенсов.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу \(x=t_0+πn\), \(n∈Z\) (подробнее о формуле в видео), где \(t_0\) – как раз то значение, которые вы нашли в шаге 4.

Специально для вас мы сделали удобную табличку со всеми шагами алгоритма и разными примерами к нему. Пользуйтесь на здоровье! Можете даже распечатать и повесить на стенку, чтоб больше никогда не ошибаться в этих уравнениях.

Алгоритм решения простейших уравнений с котангенсом

Сразу скажу, что алгоритм решения уравнений с котангенсом почти такой же, как и с тангенсом.

Шаг 1. Вопрос у нас практически тот же – из каких точек круга можно попасть в \(\frac<1><\sqrt<3>>\) на оси котангенсов?
Строим круг, проводим нужные оси.

Теперь отмечаем на оси котангенсов значение, которому котангенс должен быть равен…

…и соединяем центр окружности и точку на оси котангенсов прямой линией.

По сути точки найдены. Осталось записать их все. Вновь определяем значение в одной из них…

…и записываем окончательный ответ по формуле \(x=t_0+πn\), \(n∈Z\), потому что у котангенса период такой же как у тангенса: \(πn\).

Кстати, вы обратили внимание, что ответы в задачах совпали? Здесь нет ошибки, ведь для любой точки круга, тангенс которой равен \(\sqrt<3>\), котангенс будет \(\frac<1><\sqrt<3>>\).

Разберем еще пример, а потом подведем итог.

Пример. Решить уравнение \(ctg⁡x=-1\). Здесь подробно расписывать не буду, так как логика полностью аналогична вышеизложенной.

Итак, алгоритм решения простейших тригонометрических уравнений с котангенсом:

Шаг 1. Построить окружность и оси синусов и косинусов, а также ось котангенсов.

Шаг 2. Отметить на оси котангенсов значение, которому котангенс должен быть равен.

Шаг 3. Соединить центр окружности и точку на оси котангенсов прямой линией.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу \(x=t_0+πn\), \(n∈Z\), где \(t_0\) – как раз то значение, которые вы нашли в шаге 4. И табличка в награду всем дочитавшим до этого места.

Примечание. Возможно, вы обратили внимание, что при решении примеров 2 и 3 в обеих табличках мы использовали функции \(arctg\) и \(arcctg\). Если вы не знаете, что это – читайте эту статью.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.

ФункцияОписаниеПример вводаРезультат ввода
piЧисло \(\pi\)pi$$ \pi $$
eЧисло \(e\)e$$ e $$
e^xСтепень числа \(e\)e^(2x)$$ e^ <2x>$$
exp(x)Степень числа \(e\)exp(1/3)$$ \sqrt[3] $$
|x|
abs(x)
Модуль (абсолютное значение) числа \(x\)|x-1|
abs(cos(x))
\( |x-1| \)
\( |\cos(x)| \)
sin(x)Синусsin(x-1)$$ sin(x-1) $$
cos(x)Косинус1/(cos(x))^2$$ \frac<1> $$
tg(x)Тангенсx*tg(x)$$ x \cdot tg(x) $$
ctg(x)Котангенс3ctg(1/x)$$ 3 ctg \left( \frac<1> \right) $$
arcsin(x)Арксинусarcsin(x)$$ arcsin(x) $$
arccos(x)Арккосинусarccos(x)$$ arccos(x) $$
arctg(x)Арктангенсarctg(x)$$ arctg(x) $$
arcctg(x)Арккотангенсarcctg(x)$$ arcctg(x) $$
sqrt(x)Квадратный кореньsqrt(1/x)$$ \sqrt<\frac<1>> $$
root(n,x)Корень степени n
root(2,x) эквивалентно sqrt(x)
root(4,exp(x))$$ \sqrt[4] < e^> $$
x^(1/n)Корень степени n
x^(1/2) эквивалентно sqrt(x)
(cos(x))^(1/3)$$ \sqrt[\Large 3 \normalsize] $$
ln(x)
log(x)
log(e,x)
Натуральный логарифм
(основание — число e )
1/ln(3-x)$$ \frac<1> $$
log(10,x)Десятичный логарифм числа xlog(10,x^2+x)$$ log_<10>(x^2+x) $$
log(a,x)Логарифм x по основанию alog(3,cos(x))$$ log_3(cos(x)) $$
sh(x)Гиперболический синусsh(x-1)$$ sh(x-1) $$
ch(x)Гиперболический косинусch(x)$$ ch(x) $$
th(x)Гиперболический тангенсth(x)$$ th(x) $$
cth(x)Гиперболический котангенсcth(x)$$ cth(x) $$

Почему решение на английском языке?

При решении этой задачи используется большой и дорогой модуль одного «забугорного» сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство — на английском языке, но это не большая цена за качество.

Некоторые пояснения по выводу решения.

ВыводПеревод, пояснение
Solve for x over the real numbersРешить относительно х в действительных числах (бывают ещё комплексные)
Multiply both sides by .Умножаем обе части на .
Simplify and substitute .Упрощаем и делаем подстановку .
Simplify trigonometric functionsУпрощаем тригонометрические функции
Bring . together using the commom denominator .Приводим . к общему знаменателю .
The left hand side factors into a product with two termsЛевая часть разбивается на множители как два многочлена
Split into two equationsРазделяем на два уравнения
Take the square root of both sidesИзвлекаем квадратный корень из обоих частей
Subtract . from both sidesВычитаем . из обеих частей уравнения
Add . to both sidesПрибавляем . к обоим частям уравнения
Multiply both sides by .Умножаем обе части уравнения на .
Divide both sides by .Делим обе части уравнения на .
Substitute . Then .Делаем подстановку . Тогда .
Substitute back for .Обратная подстановка для .
. has no solution since for all .. не имеет решения для всех .
Take the inverse sine of both sidesИзвлекаем обратный синус (арксинус) из обоих частей
Simplify the expressionУпрощаем выражение
AnswerОтвет
\(log(x)\)Натуральный логарифм, основание — число e. У нас пишут \(ln(x)\)
\(arccos(x)\) или \(cos^<-1>(x)\)Арккосинус. У нас пишут \( arccos(x) \)
\(arcsin(x)\) или \(sin^<-1>(x)\)Арксинус. У нас пишут \( arcsin(x) \)
\(tan(x)\)Тангенс. У нас пишут \(tg(x) = \frac\)
\(arctan(x)\) или \(tan^<-1>(x)\)Арктангенс. У нас пишут \(arctg(x)\)
\(cot(x)\)Котангенс. У нас пишут \(ctg(x) = \frac\)
\(arccot(x)\) или \(cot^<-1>(x)\)Арккотангенс. У нас пишут \(arcctg(x)\)
\(sec(x)\)Секанс. У нас пишут также \(sec(x) = \frac<1>\)
\(csc(x)\)Косеканс. У нас пишут \(cosec(x) = \frac<1>\)
\(cosh(x)\)Гиперболический косинус. У нас пишут \(ch(x) = \frac> <2>\)
\(sinh(x)\)Гиперболический синус. У нас пишут \(sh(x) = \frac> <2>\)
\(tanh(x)\)Гиперболический тангенс. У нас пишут \(th(x) = \frac>> \)
\(coth(x)\)Гиперболический котангенс. У нас пишут \(cth(x) = \frac<1>\)

Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.

Функция y = ctg x, её свойства и график

п.1. Развертка котангенса движения точки по числовой окружности в функцию от угла

При движении точки по числовой окружности на горизонтальной касательной, проведенной через точку (0;1), отображаются значения котангенсов соответствующих углов (см. §3 данного справочника).

Рассмотрим, как изменяется котангенс, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=ctgx на этом отрезке.

Если мы продолжим движение по окружности для углов x > 2π, кривые продолжатся вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x главной ветвью графика котангенса.

п.2. Свойства функции y=ctgx

1. Область определения \(x\ne\pi k\) — множество действительных чисел, кроме точек, в которых \(sinx=0\) .

2. Функция не ограничена сверху и снизу. Область значений \(y\in\mathbb\)

3. Функция нечётная $$ ctg(-x)=-ctgx $$

4. Функция периодическая с периодом π $$ ctg(x+\pi k)=ctgx $$

5. Функция стремится к \(-\infty\) при приближении слева к точкам \(x=\pi k\) .
Приближение к точке a слева записывается как \(x\rightarrow a-0\) $$ \lim_ ctgx=-\infty $$ Функция стремится к \(+\infty\) при приближении справа к точкам \(x=\pi k\) .
Приближение к точке a справа записывается как \(x\rightarrow a+0\) $$ \lim_ ctgx=+\infty $$ Нули функции \(y_<0>=0\) достигаются в точках \(x_0=\frac\pi2+\pi k\)

6. Функция убывает на всей области определения.

7. Функция имеет разрывы в точках \(x=\pi k\) , через эти точки проходят вертикальные асимптоты. На интервалах между асимптотами \((\pi k;\ \pi+\pi k)\) функция непрерывна.

п.3. Примеры

Пример 1. Найдите наименьшее и наибольшее значение функции y=ctgx на заданном промежутке:

a) \(\left[\frac<2\pi><3>; \pi\right)\) $$ y_=\lim_ctgx=-\infty,\ \ y_=ctg\left(\frac<2\pi><3>\right)=-\frac<1><\sqrt<3>> $$ б) \(\left(0; \frac<\pi><4>\right]\) $$ y_=ctg\left(\frac<\pi><4>\right)=1,\ \ y_=\lim_ctgx=+\infty $$ в) \(\left[\frac<7\pi><6>; \frac<7\pi><4>\right]\) $$ y_=ctg\left(\frac<7\pi><4>\right)=-1,\ \ y_=ctg\left(\frac<7\pi><6>\right)=\sqrt <3>$$

Пример 2. Решите уравнение:
a) \(ctgx=-\sqrt<3>\)
Бесконечное множество решений: \(x=\frac<5\pi><6>+\pi k,\ k\in\mathbb\)

б) \(ctg\left(x+\frac\pi2\right)=0\)
\(x+\frac\pi2=\frac\pi2+\pi k\)
Бесконечное множество решений: \(x=\pi k,\ k\in\mathbb\)

в) \(ctg(2x)=1\)
\(2x=\frac\pi4+\pi k\)
Бесконечное множество решений: \(x=\frac<\pi><8>+\frac<\pi k><2>,\ k\in\mathbb\)

Пример 3. Постройте графики функций: a) \(y(x)=x^2-2tgx\cdot ctgx\)

Произведение \(tgx\cdot ctgx=1\). При этом ограничивается область определения функции \(y(x)\), т.к. \(tgx\) и \(ctgx\) имеют разрывы.
Точки разрыва отмечены на числовой окружности: \(x\ne\frac<\pi k><2>\).

Получаем: $$ \begin x^2-2\\ x\ne\frac<\pi k><2>,\ \ k\in\mathbb \end $$ Строим график параболы и выкалываем точки, не входящие в ОДЗ.

Сумма \(sin^2(tgx)+cos^2(tgx)=1\). При этом ограничивается область определения функции \(y(x)\), т.к. \(tgx\) имеeт разрывы.
Точки разрыва отмечены на числовой окружности: \(x\ne\frac<\pi><2>+\pi k\).

Получаем: $$ \begin 1-x\\ x\ne\frac<\pi><2>+\pi k,\ \ k\in\mathbb \end $$ Строим график прямой и выкалываем точки, не входящие в ОДЗ.


источники:

http://www.math-solution.ru/math-task/trigonometry-equality-info

http://reshator.com/sprav/algebra/10-11-klass/funkcziya-y-ctgx-svojstva-i-grafik/