Решите квадратное уравнение подбором корней

Квадратное уравнение. Дискриминант. Теорема Виета.

теория по математике 📈 уравнения

Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b 2 –4ac

    Если D>0, то уравнение имеет два различных

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

Пример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Теорема Виета

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

Данное уравнение является квадратным. Но в его условии присутствует квадратный

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

х 2 − 2 х − 24 = 0

Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

pазбирался: Даниил Романович | обсудить разбор | оценить

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e0ec3b40ebb75a3 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Различные способы решения квадратных уравнений

Разделы: Математика

Цели урока:

  • Систематизировать различные способы решения квадратных уравнений, дать представление учащимся о важных вехах истории развития математики;
  • Обучать поискам нескольких способов решения одной задачи и умению выбирать из них наиболее оптимальный;
  • Развивать навыки работы с дополнительной литературой, историческим материалом;
  • Показать многообразие и красоту математических решений.
  • Тип урока: урок систематизации и обобщения.

    Ход урока

    Устная работа:
    Определите, имеет ли уравнение корни. Если имеет, то ответьте на вопросы:

    а) Сколько корней имеет уравнение?

    б) Рациональными или иррациональными являются его корни?

    в) Каковы знаки корней?

    г) Если корни разных знаков, то какой из них имеет больший модуль?

    3 x 2 + 7х +2 =0; 3 – 8у + 2 = 0; 5 x 2 – 3х +2 =0; 2 x 2 – 10х – 5 =0.

  • Решите квадратное уравнение подбором корней:
  • x 2 + 9х +20 =0; x 2 – 17х + 30 =0; x 2 + 7х – 60=0; x 2 – 11х + 24 =0.

    Учитель: Сегодня на уроке мы рассмотрим различные способы решения квадратных уравнений в разные исторические эпохи на примере одной задачи-решения квадратного уравнения.

    Ученик 1: Методы решения квадратных уравнений были известны еще в древние времена. Они излагались в вавилонских рукописях царя Хаммурапи (XX в. до н.э.), в трудах древнегреческого математика Евклида (III в. до н. э), в древних китайских и японских трактатах. Многие математики древности решали квадратные уравнения геометрическим способом: квадрат и 10 его корней равны 39.

    Для решения уравнения x 2 + 10х = 39 поступали следующим образом. Пусть АВ = х, ВС=5, ( 10:2). На стороне АС = АВ + ВС строился квадрат, который разбивался на четыре части. Очевидно, что сумма площадей трех частей равна x 2 + 10х или 39. Если к этой площади прибавить площадь четвертой части, то 39+25=64 – площадь всего квадрата. Но, эта же площадь равна = 64, х + 5 = 8, х = 3. Таким образом, число 3 является корнем квадратного уравнения, так как отрицательных чисел тогда не знали.

    Ученик 2: А вот как решал эту же задачу ал-Хорезми в 825 году. Строим квадрат со стороной х и на его сторонах – четыре прямоугольника высотой 10/4. В углах фигуры построим четыре квадрата со стороной 10/4. Подсчитаем площадь получившегося большого квадрата:

    x 2 + 4 · 10/4 · х + = x 2 + 10х + · 4.

    По условию x 2 + 10х = 39, т.е. площадь получившегося большого квадрата равна

    39 + + · 4 = 39 + 25 = 64. Значит, его сторона равна 8, тогда

    х + 2· 10/4 = 8, х = 3 (Ал-Хорезми не признавал отрицательных чисел).

    Ученик 3: В III в. н. э. квадратное уравнение x 2 – 20х + 96 = 0 решал великий древнегреческий математик Диофант.

    Пусть сумма двух чисел 20, а произведение 96.Допустим, что разность этих чисел 2z. Так как их сумма 20, то если разделить ее пополам, каждая из полученных делением частей будет равна половине суммы, то есть 10. И если половину разности – z прибавить к одной из полученных от деления половине и вычесть из другой, то опять получается сумма 20 и разность 2z.

    Пусть большее из искомых чисел равно z + 10, тогда меньшее — 10–z. Их сумма 20, а разность 2z. Произведение искомых чисел равно 96. Таким образом,

    (10 + z)(10 –z) = 96, 100 – = 96, = 4, z = 2. Следовательно, большее число равно 12, а меньшее 8.

    Давайте пробуем решить квадратное уравнение x 2 + 10х = 39 методом Диофанта.

    1. Пусть x 2 + 10х – 39 =0;
    2. Положим разность искомых чисел 2z;
    3. –5 — половина коэффициента при х с противоположным знаком;
    4. Положим х1 = z – 5, х2 = z + 5. Тогда (z – 5)(z + 5) = 39, – 25 = 39,

    = 64, z =8.

    Отсюда, х1 = 8–5=3, х2 = 8+5=13. Полученные корни 13 и 3 “устроили” бы Диофанта, т.к. оба натуральные. Но, используя теорему Виета, мы видим, что х1·х2 = –39, а это означает, что корни должны быть разного знака. Значит, не каждое уравнение можно решить этим методом.

    Ученик 4: Неполные квадратные уравнения и частные виды полных квадратных уравнений умели решать вавилоняне и египтяне (2 тыс. лет до н.э.). Некоторые виды квадратных уравнений решали и древнегреческие математики, используя геометрический подход. Примеры решения уравнений без обращения к геометрии дает Диофант Александрийский (III в. н. э.). В своем трактате хорезмский тематик Мухаммед ал-Хорезми в 825 г. Разъясняет приемы решения квадратных уравнений. После трудов немецкого математика М. Штифеля (1487 – 1567 гг.), нидерландца А. Жирара (1595 – 1632 гг.), Р.Декарта и Н.Ньютона, способ решения квадратных уравнений принял современный вид. А в 1591 г. Ф.Виет вывел формулы, выражающие зависимость корней квадратного уравнения от его коэффициентов и сформулировал свою знаменитую теорему.

    Ученик 5: Франсуа Виет родился в 1540 г. Во Франции, в Фонтене – ле – Конт. По образованию юрист. Он много занимался адвокатской деятельностью, а с 1571 г. по 1584 г. Был советником короля Георга III и Георга IV. Но, все свободное время, весь свой досуг он отдавал занятиям математикой. Особенно усиленно он начал работать в области математики с 1584 г., после отстранения от должности при королевском дворе. Виет детально изучил труды как древних так и современных ему математиков и создал по существу новую алгебру. Он ввел в нее буквенную символику. После открытия Виета, стало возможным записывать правила в виде формул.

    Учитель: Именно с 1591 г. мы пользуемся формулами при решении квадратных уравнений. Решим квадратное уравнение x 2 + 10х – 39 =0 современными способами.

    x 2 + 10х – 39 = 0,
    а = 1, b = 10, с = –39.
    D = – 4ac; D = 100 + 156 = 256, D > 0.

    Х1,2 = (; Х1 = (-10 + 16)/2 = 3; Х2 = (-10 — 16)/2 = -13.

    Ученик 6: Следует отметить, что второй коэффициент в данном уравнении четный, что позволяет использовать иную формулу для решения данного уравнения.

    x 2 + 10х – 39 =0 ,
    а = 1, k= 5, с = –39.
    D1 = – ac; D1 = 25 + 39 = 64, D1> 0.

    Х1,2 =( ; Х1 = (-5 + 8)/1 = 3; Х2 = (-5 — 8)/1 = -13.

    Ученик 7: Данное уравнение можно решить, используя теорему, обратную теореме Виета.

    x 2 + 10х – 39 = 0,

    Учитель: Существуют ли другие способы решения квадратных уравнений?

    Ученик: Квадратные уравнения можно решать, используя свойства “суммы коэффициентов”. Если a + b + c = 0, х1 = 1, х2 = c/а; или если a – b – c = 0, то х1 = –1, х2 = – с/а. Но, данное квадратное уравнение нельзя решить, используя эти соотношения. Например, изменим в рассмотренном уравнении свободный член:

    x 2 + 10х – 11 = 0;
    a = 1; b = 10; с = –11; 1 + 10 – 11 = 0;
    х1 = 1; х2 = –11.

    Учитель: Приведите примеры уравнений, решаемых с применением второго утверждения.

    Например: –10 x 2 + 29х + 39 =0; x 2 – 2005х – 2006 = 0.

    Учитель: В учебнике мы встречаем задания, где четко обозначено, как решить квадратное уравнение. В предложенных вам задачах вы не только решите уравнение, но и узнаете интересные факты.

    1.Известно, что учет населения проводился в Египте и в Китае еще до нашей эры. Решив квадратное уравнение 4x 2 – 24х + 39 =0 , вы определите в каком это было тысячелетии до н.э.

    2. На основе статистических данных можно выделить регионы с максимальным сбросом загрязненных вод: это Краснодарский край и Москва. Сколько процентов общего количества загрязненных вод дают эти регионы, вы узнаете, решив уравнение x 2 – 19х + 88 =0 .

    3. Кислотные осадки разрушают сооружения из мрамора и других материалов. Исторические памятники Греции и Рима, простояв тысячелетия, за последние годы разрушаются прямо на глазах. “Мировой рекорд” принадлежит одному шотландскому городку, где 10 апреля 1974 года выпал дождь, скорее напоминающий столовый уксус, чем воду. Устно решите уравнения, найдите верный ответ и соответствующую ему букву и прочитайте название этого “знаменитого” городка. (Питлохри).


    источники:

    http://mathvox.ru/algebra/uravneniya-reshenie-uravnenii/glava-5-kvadratnie-uravneniya/podbor-kornei-kvadratnogo-uravneniya-pri-pomoschi-teoremi-vieta-primer-1/

    http://urok.1sept.ru/articles/556968