Решите неоднородное рекуррентное уравнение с начальными условиями

Рекуррентные соотношения и уравнения

В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.

Как решать рекуррентные соотношения?

Для решения рекуррентных соотношений применяют один из двух основных способов:

  • Метод производящих функций
  • Метод характеристического уравнения

В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.

Метод производящих функций

  1. Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен $k$) $$a_ <0>= …, \\ a_ <1>= …, \\ a_ = …, \\ … \\ a_ = …, n\geqslant k$$
  2. Домножить каждую строчку на $z$ в соответствующей степени $z^ \cdot a_$ и сложить все выражения для $n \ge 0$. В левой части получится сумма $\displaystyle\sum_^ <\infty>a_nz^n$ — это производящая функция, назовем ее $G(z)$. Правую часть преобразовать так, чтобы она превратилась в выражение, включающее $G(z)$.
  3. Решить полученное уравнение относительно $G(z)$.
  4. Разложить $G(z)$ в степенной ряд, тогда коэффициент при $z_n$ будет искомым выражением для $a_n$.

Метод характеристических функций

Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:

  1. Записать соответствующее однородное рекуррентное уравнение (РУ): $$ p_ a_ + p_a_ + . + p_n a_n =f \to \\ \to p_ a_ + p_a_ + . + p_n a_n =0. $$
  2. Выписать для него характеристическое уравнение и найти его корни $\lambda_i$ $$ p_ \lambda^ + p_\lambda^ + . + p_\lambda + p_n =0. $$
  3. Выписать согласно полученным корням $\lambda_1, . \lambda_k$ общее решение однородного рекуррентного соотношения (подробнее теорию см. по ссылке [1] ниже). $$ C_1 \lambda_1^n +. +C_k \lambda_k^n \, \mbox < для случая различных простых корней>, $$ $$ C_1 \lambda_1^n + C_2 n\lambda_1^n +. +C_m n^m \lambda_1^n+. +C_k \lambda_k^n \mbox < для случая корня >\, \lambda_1 \, < кратности >\, m. $$
  4. Подобрать частное решение неоднородного рекуррентного соотношения по виду правой части (особенно удобно для правых частей вида $\mu^n*P(n)$, $P(n)$ — многочлен от $n$).
  5. Представить общее решение неоднородного РУ как сумму общего решения соответствующего однородного РУ и частного решения неоднородного РУ.
  6. Подставить начальные условия $a_0, a_1, . a_$ и получить значения констант $C_1, . C_k$.

Решение для последовательности чисел Фибоначчи

Последовательность чисел Фибоначи — это последовательность, каждый элемент которой (кроме нулевого и первого) равен сумме двух предыдущих:

$$ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 , . $$

Числа Фибоначчи растут быстро: $f_<10>=55$, $f_<20>=6765$, а $f_<100>=354224848179261915075$.

Общая формула данной рекуррентной последовательности имеет вид6

Способ 1. Производящяя функция

Начинаем с второго шага алгоритма, домножаем на $z^n$:

$$\begin 1\cdot f_0 &= &0\cdot 1,\\ z\cdot f_1 &= &1\cdot z,\\ z\cdot f_n & = &(f_+f_)\cdot z^n, \quad n\geq2.\\ \end $$

Складываем все строчки:

На третьем шаге алгоритма приводим все суммы к замкнутому виду:

откуда выводим искомое выражение для производящей функции:

Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:

Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:

Рассмотрим первую дробь и поделим в ней числитель и знаменатель на $z_1$:

Аналогично (но с делением на $z_2$) действуем со второй дробью:

Преобразуем данное выражение, используя то, что

$$1/z_1=-z_2, \quad 1/z_2 = -z_1, \quad z_1-z_2=\sqrt <5>$$ $$f_n=\frac<1><\sqrt<5>>\left( \biggl( \frac<1+\sqrt<5>> <2>\biggr)^n — \biggl( \frac<1-\sqrt<5>> <2>\biggr)^n \right). $$

Способ 2. Характеристическое уравнение

Запишем характеристический многочлен для $f_n=f_+f_$, и найдем его корни:

Тогда общее решение однородного рекуррентного уравнения имеет вид:

Осталось найти значения произвольных постоянных $C_1, C_2$ из начальных условий $f_0=0, f_1=1$.

Решая систему, найдем

Итоговое выражение для последовательности чисел Фибоначчи:

Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.

Примеры решений

Задача 1. Решить рекуррентное соотношение $f(n+2)=-6f(n+1)+7f(n)+n-3$ с начальными условиями $f(0)=2$ и $f(1)=4$, сделать проверку

Задача 2. Решить рекуррентное соотношение $f(n+2)=-2f(n+1)+3f(n)-3^n$ с начальными условиями $f(0)=1$, $f(1)=3$ и сделать проверку

Задача 3. 1. Решить рекуррентное соотношение $f(n+2) =-5f(n+1) -4f(n) + 3n^2$ с начальными условиями $f(0) = 2$, $f(1) = 3$.
2. Проверить, удовлетворяет ли найденное решение начальным условиям и обращает ли оно рекуррентное соотношение в справедливое тождество.

Задача 4. Найти последовательность $$, удовлетворяющую рекуррентному соотношению $a_ + 4 a_ + 3 a_ = 0$ и начальным условиям $a_1=2$, $a_2=4$.

Дискретная математика — рекуррентное соотношение

В этой главе мы обсудим, как рекурсивные методы могут выводить последовательности и использоваться для решения задач подсчета. Процедура поиска членов последовательности рекурсивным способом называется рекуррентным отношением . Мы изучаем теорию линейных рекуррентных соотношений и их решения. Наконец, мы вводим производящие функции для решения рекуррентных отношений.

Определение

Рекуррентное отношение — это уравнение, которое рекурсивно определяет последовательность, в которой следующий член является функцией предыдущих членов (выражая F n как некоторую комбинацию F i с i n ).

Пример — ряд Фибоначчи — F n = F n − 1 + F n − 2 , Ханойская башня — F n = 2 F n − 1 + 1

Линейные рекуррентные отношения

Линейное рекуррентное уравнение степени k или порядка k — это рекуррентное уравнение в формате x n = A 1 x n − 1 + A 2 x n − 1 + A 3 x n − 1 + d o t s A k x n k ( A n — константа, а A k n e q 0 ) на последовательности чисел как полинома первой степени.

Вот некоторые примеры линейных рекуррентных уравнений —

Рецидив отношенийНачальные значенияРешения
F n = F n-1 + F n-2a 1 = a 2 = 1Число Фибоначчи
F n = F n-1 + F n-2а 1 = 1, а 2 = 3Номер Лукаса
F n = F n-2 + F n-3a 1 = a 2 = a 3 = 1Падовская последовательность
F n = 2F n-1 + F n-2a 1 = 0, a 2 = 1Число Пелла

Как решить линейное рекуррентное соотношение

Предположим, что два упорядоченных линейных рекуррентных соотношения имеют вид — F n = A F n − 1 + B F n − 2 , где A и B — действительные числа.

Характеристическое уравнение для вышеуказанного рекуррентного соотношения —

x 2 − A x e − B = 0

Три случая могут возникнуть при поиске корней —

Случай 1 — Если это уравнение учитывается как ( x − x 1 ) ( x − x 1 ) = 0 и оно дает два различных реальных корня x 1 и x 2 , то F n = a x n 1 + b x n 2 является решение. [Здесь a и b являются константами]

Случай 2 — Если это уравнение вычисляется как ( x − x 1 ) 2 = 0 , и оно порождает один действительный корень x 1 , то решением является F n = a x n 1 + b n x n 1 .

Случай 3 — Если уравнение дает два различных комплексных корня, x 1 и x 2 в полярной форме x 1 = r a n g l e t h e t a и x 2 = r a n g l e ( − t h e t a ) , то F n = r n ( a c o s ( n t h e t a ) + b s i n ( n t h e t a ) ) является решением.

Решите рекуррентное соотношение F n = 5 F n − 1 − 6 F n − 2 , где F 0 = 1 и F 1 = 4 .

Характеристическое уравнение рекуррентного соотношения —

Итак, ( x − 3 ) ( x − 2 ) = 0

x 1 = 3 и x 2 = 2

Корни реальны и различны. Итак, это в форме дела 1

F n = a x n 1 + b x n 2

Здесь F n = a 3 n + b 2 n ( A s x 1 = 3 a n d x 2 = 2 )

1 = F 0 = a 3 0 + b 2 0 = a + b

4 = F 1 = a 3 1 + b 2 1 = 3 a + 2 b

Решая эти два уравнения, мы получаем a = 2 и b = − 1

Следовательно, окончательное решение —

$$ F_n = 2,3 ^ n + (-1). 2 ^ n = 2,3 ^ n — 2 ^ n $$

Решите рекуррентное соотношение — F n = 10 F n − 1 − 25 F n − 2 , где F 0 = 3 и F 1 = 17 .

Характеристическое уравнение рекуррентного соотношения —

x 2 − 10 x − 25 = 0

Итак, ( x − 5 ) 2 = 0

Следовательно, существует один действительный корень x 1 = 5

Поскольку существует единый действительный корень, он имеет вид случая 2

F n = a x n 1 + b n x n 1

3 = F 0 = a .5 0 + b .0 .5 0 = a

17 = F 1 = a .5 1 + b .1 .5 1 = 5 a + 5 b

Решая эти два уравнения, мы получаем a = 3 и b = 2 / 5

Следовательно, окончательное решение — F n = 3.5 n + ( 2 / 5 ) . n .2 n

Решите рекуррентное соотношение F n = 2 F n − 1 − 2 F n − 2 , где F 0 = 1 и F 1 = 3

Характеристическое уравнение рекуррентного соотношения —

Рекуррентные соотношения. Возвратные последовательности

Рекуррентным соотношением , рекуррентным уравнением , или рекуррентной формулой называется соотношение вида an + k = F ( n , an, an + 1 , …, an + k – 1 ), которое позволяет вычислять все члены последовательности a 0, a 1, a 2, …, если заданы ее первые k членов.

Пример 6.1.1. Формула an + 1 = an+ d задает арифметическую прогрессию.

2. Формула an + 1 = q · anопределяет геометрическую прогрессию.

3. Формула an + 2 = an + 1 + anзадает последовательность чисел Фибоначчи .

В случае, когда рекуррентное соотношение линейно и однородно, т. е. выполняется соотношение вида

( p = const ), последовательность a 0, a 1, a 2, … называется возвратной . Многочлен

называется характеристическим для возвратной последовательности < an>. Корни многочлена Pa( x ) называются характеристическими .

Множество всех последовательностей, удовлетворяющих данному рекуррентному соотношению, называется общим решением .

Описание общего решения соотношения (5.4) имеет аналоги с описанием решения обыкновенного дифференциального уравнения с постоянными коэффициентами.

Теорема 6.1.1. Пусть λ — корень характеристического многочлена (5.5). Тогда последовательность < c λ n>, где с — произвольная константа, удовлетворяет соотношению (5.4).

2. Если λ 1, λ 2, …, λ k— простые корни характеристического многочлена (5.5), то общее решение рекуррентного соотношения (5.4) имеет вид ап= c 1λ 1n+ c 2λ 2n+ … + ckλ kn, где c 1, c 2, …, ck— произвольные константы.

3. Если λ j— корень кратности ri( i = 1, …, s ) характеристического многочлена (5.5), то общее решение рекуррентного соотношения (5.4) имеет вид где cij— произвольные константы.

Зная общее решение рекуррентного уравнения (5.4), по начальным условиям a 0, a 1, a 2, …, ak – 1 можно найти неопределенные постоянные cijи тем самым получить решение уравнения (5.4) с данными начальными условиями.

Пример 6.2.Найти последовательность <ап>, удовлетворяющую рекуррентному соотношению an + 2 – 4 an + 1 + 3 an= 0 и начальным условиям a 1= 10, a 2= 16.

Корнями характеристического многочлена Pa( x ) = x 2– 4 x + 3 являются числа x 1= 1 и x 2= 3. Следовательно, по теореме 6.1. общее решение имеет вид ап = c 1 + c 23 n. Используя начальные условия, получаем систему

решая которую, находим c 1= 7 и c 2= 1. Таким образом, а n= 7 + 3 n.

Рассмотрим неоднородное линейное рекуррентное уравнение

Пусть < bn> — общее решение однородного уравнения (5.4), а <сп> частное (конкретное) решение неоднородного уравнения (5.6). Тогда последовательность < b п+ сп> образует общее решение уравнения (5.6), и тем самым справедлива.

Теорема 6.2.Общее решение неоднородного линейного рекуррентного уравнения представляется в виде суммы общего решения соответствующего однородного линейного рекуррентного уравнения и некоторого частного решения неоднородного уравнения.

Таким образом, в силу теоремы 6.1. задача нахождения общего решения рекуррентного уравнения (5.6) сводится к нахождению некоторого частного решения.

В отдельных случаях имеются общие рецепты нахождения частного решения.

Если f ( n ) = β n (где β не является характеристическим корнем), то, подставляя ап= cβ пв (5.6), получаем с (β k+ p 1β k – 1 + … + p k) · β nи отсюда с · Ра( b ) = 1, т. е. частное решение можно задать формулой

Пусть f ( n ) — многочлен степени k от переменной п , и число 1 не является характеристическим корнем. Тогда Ра(1) = 1 + p 1+ … + pk≠ 0 и частное решение следует искать в виде Подставляя многочлены в формулу (5.6), получаем

Сравнивая коэффициенты в левой и правой частях последнего равенства, получаем соотношения для чисел di, позволяющие эти числа определить.

Пример 6.3.Найти решение уравнения

с начальным условием а 0= 1.

Рассмотрим характеристический многочлен Ра(х ) = х + 2. Так как Р a(1) = 3 ≠ 0 и правая часть f ( n ) уравнения (5.6) равна n + 1, то частное решение будем искать в виде сп = d 0+ dп . Подставляя спв уравнение (5.7), получаем ( d 0+ d 1(п + 1)) + 2( d 0+ d 1п ) = (3 d 0+ d 1)+ 3 d 1п = 1 + п . Приравнивая коэффициенты в левой и правой частях последнего равенства, получаем систему

откуда, находим Таким образом, частное решение уравнения (5.7) имеет вид По теореме 6.1. общее решение однородного уравнения an + 1 + 2ап= 0 задается формулой b п= с · (–2) n, и по теореме 6.2. получаем общее решение уравнения (5.7): Из начального условия а 0= 1 находим , т. е. Таким образом,

Цит. по: Элементы дискретной математики: учебник /
С.В. Судоплатов
, Е.В. Овчинникова. — М.: ИНФРА-М;
Новосибирск: НГТУ
, 2003. — С. 166–170 .— (Серия «Высшее образование»).

Дата добавления: 2016-02-24 ; просмотров: 3490 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://coderlessons.com/tutorials/akademicheskii/diskretnaia-matematika/diskretnaia-matematika-rekurrentnoe-sootnoshenie

http://helpiks.org/7-16001.html