Решите показательные логарифмические уравнения неравенства i

Неравенства. Метод замены множителя (метод рационализации)

Полезный прием для решения сложных неравенств на ЕГЭ по математике – метод рационализации неравенства. Другое название — метод замены множителя. Это один из тех секретов, о которых ученику рассказывает репетитор. В учебниках о таком не написано.

Суть метода в том, чтобы от неравенства, содержащего в качестве множителей сложные показательные или логарифмические выражения, перейти к равносильному ему более простому рациональному неравенству.

Давайте для начала вспомним, что такое равносильные уравнения (или неравенства) В школьной программе этот важный вопрос почти не обсуждается. Поэтому запишем определение.

Равносильными называются уравнения, множества решений которых совпадают.

Заметим, что внешне уравнения могут быть и не похожи друг на друга.

Например, уравнения ( x − 3) 2 = 0 и x − 3 = 0 равносильны. Число 3 является единственным решением и того, и другого.

Уравнения и также равносильны. Оба они не имеют решений. Другими словами, множество решений каждого из них – пусто.

Уравнения и не являются равносильными. Решением первого уравнения является только x = 5. Решения второго – два числа: x = 5 и x = 1. Получается, что возведение обеих частей уравнения в квадрат в общем случае приводит к уравнению, неравносильному исходному.

Аналогичное определение – для неравенств.

Равносильными называются неравенства, множества решений которых совпадают.
Например, неравенства 0″ src=»https://latex.codecogs.com/png.latex?(x-1)(x-3)%3E0″ /> и 0″ src=»https://latex.codecogs.com/png.latex?%5Cfrac%3Cx-1%3E%3Cx-3%3E%3E0″ /> равносильны – ведь множества их решений совпадают. В этом легко убедиться с помощью метода интервалов.

Неравенства log_<2>5″ src=»https://latex.codecogs.com/png.latex?log_%3C2%3Ex%3Elog_%3C2%3E5″ /> и 5″ src=»https://latex.codecogs.com/gif.latex?x%3E&space;5″ /> также равносильны при 0″ src=»https://latex.codecogs.com/gif.latex?x%3E&space;0″ />. Заметим, что внешне эти неравенства не похожи – одно из них логарифмическое, другое алгебраическое.

Другими словами, при x > 0 неравенства 0″ src=»https://latex.codecogs.com/png.latex?log_%3C2%3Ex-log_%3C2%3E5%3E0″ /> и 0″ src=»https://latex.codecogs.com/png.latex?x-5%3E0″ /> имеют одинаковые решения. Если какое-либо число x > 0 является решением одного из них, то оно будет и решением второго.

А это значит, что при любом x > 0 выражение будет иметь такой же знак, как и выражение x − 5. Следовательно, если в какое-либо сложное неравенство входит в качестве множителя выражение то при выполнении условия x > 0 его можно заменить на более простое x − 5 и получить неравенство, равносильное исходному.

Вот ключевой момент. На этом и основан метод рационализации – замены множителей, содержащих сложные логарифмические или показательные выражения, на более простые алгебраические множители.

Например, выражение вида , где f и g – функции от x, a – число, можно заменить на более простое ( f − g) ( a − 1) – конечно, при условии, что f(x) > 0 и g(x) > 0. Доказательство легко провести самостоятельно.

А сейчас – самое главное: волшебная таблица, позволяющая заменять сложные логарифмические (или показательные) множители в неравенствах на более простые. Эта таблица является ключом к задаче С3. Вот увидите, она выручит вас на ЕГЭ по математике:

Сложный множительНа что заменить
log h f − log h g( h − 1) ( f − g)
log h f − 1( h − 1) ( f − h)
log h f( h − 1) ( f − 1)
h f − h g( h − 1) ( f − g)
h f − 1( h − 1) · f
f h − g h( f − g) · h
f, g — функции от x.
h — функция или число.

Конечно же, все выражения, которые содержат логарифмы, существуют при f, g, h > 0 и h ≠ 1.

Когда на ЕГЭ по математике вы применяете метод рационализации (замены множителя), — обязательно поясните, что вы им воспользовались. И не забудьте доказать соответствующую формулу. Иначе можно потерять балл.

Обратите внимание, что мы говорим о замене множителя в неравенствах вида Знак здесь может быть любой: >, ≥, ≤. Правая часть обязательно должна быть равна нулю. И заменяем мы именно множитель (а не слагаемое, например). Иначе ничего не получится.

Перейдем к практике – к решению задач из вариантов ЕГЭ по математике Профильного уровня.

1.

ОДЗ неравенства:

Применим метод рационализации. В соответствии с нашей таблицей, множитель заменим на (2 − x − 1)( x + 2 − 1). Множитель вида заменим на ( x + 3 − 1)(3 − x − 1). Таким образом, от логарифмического неравенства мы перешли к рациональному:

Решим его методом интервалов:

Ответ:

2.

Заметим, что выражение положительно при x ∈ ОДЗ. Умножим обе части неравенства на это выражение.
Упростим числитель правой части неравенства:


Поделим обе части неравенства на 5 x > 0:

Неравенство уже намного проще, чем исходное. Но основания степеней разные! Чтобы применить метод рационализации, нам придется представить 2 x − 1 в виде степени с основанием 3.

Неравенство примет вид:

Воспользуемся методом замены множителя. Множитель вида h f −h g можно заменить на ( h − 1) ( f − g). Да и логарифм в знаменателе можно заменить на выражение x + 1.

Оценим . Это необходимо сделать, чтобы правильно расставить точки на числовой прямой.

Ответ:

3.

Постараемся упростить это неравенство. Область допустимых значений

0;\\ x+1\neq 0. \end\right.» src=»https://latex.codecogs.com/png.latex?%5Cleft%5C%3C%5Cbegin%3Cmatrix%3E&space;x%3E0;%5C%5C&space;x+1%5Cneq&space;0.&space;%5Cend%3Cmatrix%3E%5Cright.» />Отсюда следует, что x > 0. Это хорошо, потому что при данных значениях x выражение x + 1 строго положительно, следовательно, мы можем умножить на него обе части неравенства. Да и на x 2 тоже можно умножить обе части неравенства, и тогда оно станет проще

Преобразуем числители выражений в левой и правой части и сделаем замену log2 x = t

Теперь обе части неравенства можно сократить на 5 t > 0.


Поскольку , выражение 2 t−1 можно записать как 3 ( t−1)·log32

Заметим, что log32 − 2 t. Решим его:

Итак, t ≥ 1 или t ≤ log32 − 2.
Вернемся к переменной x:

или

Ответ:

4. Еще одна задача из той же серии.

Запишем ОДЗ:

Умножим обе части неравенства на 0″ src=»https://latex.codecogs.com/png.latex?log%5E%3C2%3E_%3C2%3E32x%3E0″ />. Постараемся упростить числители выражений в левой и правой части.

Поделим обе части неравенства на 0.» src=»https://latex.codecogs.com/png.latex?2%5E%3Clog_%3C2%3E(4x)%3E%3E0.» />

Хорошо бы сделать замену. Пусть log2(4 x) = t. Тогда:

Неравенство примет вид:


Мы уже знаем, как представить число 7 в виде степени числа 2:

Применим метод рационализации.

Оценим

Применим в левой части неравенства формулу перехода к другому основанию

Последовательно применим метод замены множителя, то есть метод рационализации.
Напомним, что множитель log h f можно заменить на ( h-1)( f-1), а множитель (log h f — 1) — на ( h — 1)( f — h).

Поскольку 0″ src=»https://latex.codecogs.com/png.latex?(x+5)%5E%3C2%3E%3E0″ /> при x ∈ ОДЗ, а 0″ src=»https://latex.codecogs.com/png.latex?2x%5E%3C2%3E+10x+14%3E0″ /> > 0 при всех x, получим:

Ответ: x ∈ (-5; -3]

Посмотрим, чем поможет метод замены множителя в решении сложного показательного неравенства.

6. Решите неравенство:

Числитель дроби в левой части — однородное выражение, где каждое слагаемое имеет степень 2х. Поделим обе части неравенства на

Поскольку , поделим обе части неравенства на

Применяя метод рационализации, множитель вида заменяем на

Остается решить неравенство методом интервалов. Но как сравнить и ?

Что больше? Давайте представим как логарифм с основанием

7. Теперь логарифмическое неравенство. Обратите внимание, что здесь лучше всего записывать решение в виде цепочки равносильных переходов. И само неравенство, которое мы упрощаем, и область его допустимых значений мы записываем в одну систему. И решаем ее.

Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что

Используем также условия

Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря,

Согласно методу замены множителя, выражение заменим

Решить ее легко.

8. А теперь неравенство с ловушкой. Мы надеемся, что вы помните — нельзя извлекать корень из неравенства.

Извлекать корень из неравенства нельзя! Можно перенести все в левую часть неравенства и разложить на множители как разность квадратов:

Применим формулы разности и суммы логарифмов, следя за областью допустимых значений. Все выражения под логарифмами в исходном неравенстве должны быть положительны.

Посмотрим на второе и третье неравенства системы. Поскольку х+5 положительно, то и выражение должно быть положительно.

Заметим, что решения неравенства — это все числа, кроме

По методу рационализации, каждый из множителей вида заменяем на

Просто равносильные преобразования. Выражение положительно всегда — так как в уравнении дискриминант отрицателен. Осталось применить метод интервалов.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение логарифмических неравенств.

Этот математический калькулятор онлайн поможет вам решить логарифмическое неравенство. Программа для решения логарифмического неравенства не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое неравенство
Решить неравенство

Немного теории.

Логарифмические неравенства

Неравенства вида
\( log_ax > b \) и \( log_ax 0, \; a \neq 1, \; b \in \mathbb \)
называют простейшими логарифмическими неравенствами.

Эти неравенства можно переписать в виде
\( log_ax > log_aс \) и \( log_ax 1\)

Функция \(y = log_ax \) возрастает на всей своей области определения, т.е. на интервале \( (0; \; +\infty) \). Поэтому для любого числа \(x > c\) справедливо неравенство \( log_ax > log_aс \), а для любого \( x \in (0; \; c) \) справедливо неравенство \( log_ax 1\) и \( b \in \mathbb \) множество всех решений неравенства \( log_ax > log_aс \) есть интервал \( (c; \; +\infty) \), а множество всех решений неравенства \( log_ax c\) справедливо неравенство \( log_ax log_aс \). Кроме того, равенство \( log_ax = log_aс \) справедливо лишь при \( x = c \).

Таким образом, при \( 0 log_aс \) есть интервал \( (0; \; c) \), а множество всех решений неравенства \( log_ax -2\)

Так как \( -2 = log_<\frac<1><3>>9 \), то неравенство можно переписать в виде \( log_<\frac<1><3>>x > log_<\frac<1><3>>9 \)

Так как \( \frac<1> <2>= log_42 \), то неравенство можно переписать в виде \( log_4x > log_42 \)

Так как \(4 > 1 \), то функция \( y = log_4x \) возрастающая. Поэтому множество всех решений неравенства есть интервал \( (2; \; +\infty) \).
Ответ: \( (2; \; +\infty) \)

ПРИМЕР 3. Решим неравенство \( log_3x — 3log_9x — log_<81>x > 1<,>5 \)
Так как
$$ log_9x = \frac = \frac <2>= \frac<1> <2>log_3x ,$$
$$ log_<81>x = \frac = \frac <4>= \frac<1> <4>log_3x ,$$
то неравенство можно переписать в виде
\( \left( 1- \frac<3> <2>-\frac<1> <4>\right) log_3x > 1<,>5 \Rightarrow \)
\( log_3x 1 \), то функция \( y = log_3x \) возрастающая. Поэтому множество всех решений неравенства есть интервал \( (0; \; \frac<1><9>) \)
Ответ: \( (0; \; \frac<1><9>) \)

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).


источники:

http://www.math-solution.ru/math-task/logarithmic-inequality

http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie