Решите уравнение какой пример не имеет решения

Примеры, которые не имеют решения

Сегодня мы снова настроены на математическую тематику. Ведь в руки нам попал задачник СССР с математическими олимпиадными заданиями. В этом задачнике есть различные примеры, есть и такая категория примеров, которые вообще не имеют решения. Давайте посмотрим первый пример…

Он довольно простой. Почему этот пример не имеет решения?

Итак, первый пример… Разберем подробно…

  1. 7+1 = 8
  2. 7+1-8 = 0
  3. 1+7+7-1 = 14
  4. 14/0 — на ноль делить нельзя. Пример не имеет решение

Раскрываем скобки. Для этого значение перед скобками, умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. Тогда получаем:

Какое уравнение не имеет корней? Примеры уравнений

Решение уравнений в математике занимает особое место. Этому процессу предшествует множество часов изучения теории, в ходе которых ученик узнает способы решения уравнений, определения их вида и доводит навык до полного автоматизма. Однако далеко не всегда поиск корней имеет смысл, так как их может попросту не быть. Существуют особые приемы нахождения корней. В данной статье мы разберем основные функции, их области определения, а также случаи, когда их корни отсутствуют.

Какое уравнение не имеет корней?

Уравнение не имеет корней в том случае, если не существует таких действительных аргументов х, при которых уравнение тождественно верно. Для неспециалиста данная формулировка, как и большинство математических теорем и формул, выглядит очень размытой и абстрактной, однако это в теории. На практике все становится предельно просто. Например: уравнение 0 * х = -53 не имеет решения, так как не найдется такого числа х, произведение которого с нулем дало бы что-то, кроме нуля.

Сейчас мы рассмотрим самые базовые типы уравнений.

1. Линейное уравнение

Уравнение называется линейным, если его правая и левая части представлены в виде линейных функций: ax + b = cx + d или в обобщенном виде kx + b = 0. Где а, b, с, d — известные числа, а х — неизвестная величина. Какое уравнение не имеет корней? Примеры линейных уравнений представлены на иллюстрации ниже.

В основном линейные уравнения решаются простым переносом числовой части в одну часть, а содержимого с х — в другую. Получается уравнение вида mx = n, где m и n — числа, а х — неизвестное. Чтобы найти х, достаточно разделить обе части на m. Тогда х = n/m. В основном линейные уравнения имеют только один корень, однако бывают случаи, когда корней либо бесконечно много, либо нет вовсе. При m = 0 и n = 0 уравнение принимает вид 0 * х = 0. Решением такого уравнения будет абсолютно любое число.

Однако какое уравнение не имеет корней?

При m = 0 и n = 0 уравнение не имеет корней из множества действительных чисел. 0 * х = -1; 0 * х = 200 — эти уравнения не имеют корней.

2. Квадратное уравнение

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0 при а = 0. Самым распространенным способом решения квадратного уравнения является решение через дискриминант. Формула нахождения дискриминанта квадратного уравнения: D = b 2 — 4 * a * c. Далее находится два корня х1,2= (-b ± √D) / 2 * a.

При D > 0 уравнение имеет два корня, при D = 0 — корень один. Но какое квадратное уравнение не имеет корней? Пронаблюдать количество корней квадратного уравнения проще всего по графику функции, представляющем собой параболу. При а > 0 ветви направлены вверх, при а 2 – 8x + 72 = 0 не имеет корней, так как имеет отрицательный дискриминант D = (–8) 2 – 4 * 1 * 72 = -224. Это значит, что парабола не касается оси абсцисс и функция никогда не принимает значение 0, следовательно, уравнение не имеет действительных корней.

3. Тригонометрические уравнения

Тригонометрические функции рассматриваются на тригонометрической окружности, однако могут быть представлены и в декартовой системе координат. В данной статье мы рассмотрим две основные тригонометрические функции и их уравнения: sinx и cosx. Так как данные функции образуют тригонометрическую окружность с радиусом 1, |sinx| и |cosx| не могут быть больше 1. Итак, какое уравнение sinx не имеет корней? Рассмотрим график функции sinx, представленный на картинке ниже.

Мы видим, что функция является симметричной и имеет период повторения 2pi. Исходя их этого, можно говорить, что максимальным значением этой функции может быть 1, а минимальным -1. Например, выражение cosx = 5 не будет иметь корней, так как по модулю оно больше единицы.

Это самый простой пример тригонометрических уравнений. На самом деле их решение может занимать множество страниц, в конце которых вы осознаете, что использовали неправильную формулу и все нужно начинать сначала. Порой даже при правильном нахождении корней вы можете забыть учесть ограничения по ОДЗ, из-за чего в ответе появляется лишний корень или интервал, и весь ответ обращается в ошибочный. Поэтому строго следите за всеми ограничениями, ведь не все корни вписываются в рамки задачи.

4. Системы уравнений

Система уравнений представляет собой совокупность уравнений, объединенных фигурной или квадратной скобками. Фигурные скобки обозначают совместное выполнение всех уравнений. То есть если хотя бы одно из уравнений не имеет корней или противоречит другому, вся система не имеет решения. Квадратные скобки обозначают слово «или». Это значит, что если хотя бы одно из уравнений системы имеет решение, то вся система имеет решение.

Ответом системы с квадратными скобками является совокупность всех корней отдельных уравнений. А системы с фигурным скобками имеют только общие корни. Системы уравнений могут включать абсолютно разнообразные функции, поэтому такая сложность не позволяет сказать сразу, какое уравнение не имеет корней.

Обобщение и советы по нахождению корней уравнения

В задачниках и учебниках встречаются разные типы уравнений: такие, которые имею корни, и не имеющие их. В первую очередь, если у вас не получается найти корни, не думайте, что их нет совсем. Возможно, вы совершили где-нибудь ошибку, тогда достаточно лишь внимательно перепроверить ваше решение.

Мы рассмотрели самые базовые уравнения и их виды. Теперь вы можете сказать, какое уравнение не имеет корней. В большинстве случаев сделать это совсем не трудно. Для достижения успеха в решении уравнений требуется лишь внимание и сосредоточенность. Практикуйтесь больше, это поможет вам ориентироваться в материале гораздо лучше и быстрее.

Итак, уравнение не имеет корней, если:

  • в линейном уравнении mx = n значение m = 0 и n = 0;
  • в квадратном уравнении, если дискриминант меньше нуля;
  • в тригонометрическом уравнении вида cosx = m / sinx = n, если |m| > 0, |n| > 0;
  • в системе уравнений с фигурными скобками, если хотя бы одно уравнение не имеет корней, и с квадратными скобками, если все уравнения не имеют корней.

Показательные уравнения. Как решать показательные уравнения?

Показательное уравнение – это уравнение c переменной в показателе степени.

Как решать показательные уравнения

При решении любое показательное уравнение мы стремимся привести к виду \(a^=a^\), а затем сделать переход к равенству показателей, то есть:

Важно! Из той же логики следуют два требования для такого перехода:
число в основании степени слева и справа должно быть одинаковым;
степени слева и справа должны быть «чистыми», то есть не должно быть никаких коэффициентов , умножений, делений и т.д.

В этом показательном уравнении переход к \(x+2= 8-x\) невозможен, так как в основаниях разные числа

Здесь переход к \(x+3x=2x\) также невозможен, так как слева стоит сумма.

И в этом случае перейти к \(5-x=7x\) нельзя, ведь справа есть минус.

Мы знаем, что \(27 = 3^3\). С учетом этого преобразуем уравнение.

Теперь вспомним, что: \(a^<-n>=\frac<1>\). Эту формулу можно использовать и в обратную сторону: \(\frac<1> =a^<-n>\). Тогда \(\frac<1><3>=\frac<1> <3^1>=3^<-1>\).

Применив свойство \((a^b )^c=a^\) к правой части, получим: \((3^ <-1>)^<2x>=3^<(-1)·2x>=3^<-2x>\).

И вот теперь у нас основания равны и нет никаких мешающих коэффициентов и т.д. Значит, можем делать переход.

Решаем получившееся линейное уравнение и пишем ответ.

Воспользуемся свойством степени \(a^b \cdot a^c=a^\) в обратном направлении.

\(2^x \cdot 2^3+2^x \cdot 2^2-2^x \cdot 2^1=160\)

Теперь в левой части выносим за скобку общий множитель \(2^x\) …

…и вычисляем содержимое в скобке.

Делим на \(10\) обе части уравнения…

…и дорешиваем до ответа.

Иногда одних только свойств степеней оказывается недостаточно, и приходиться применять стандартные приемы для решения более сложных уравнений – замену переменной , расщепление уравнения и т.д.

Вновь пользуемся свойством степени \(a^b \cdot a^c=a^\) в обратном направлении.

Теперь вспоминаем, что \(4=2^2\).

Смотрим внимательно на уравнение, и видим, что тут напрашивается замена \(t=2^x\).

Однако мы нашли значения \(t\), а нам нужны \(x\). Возвращаемся к иксам, делая обратную замену.

Преобразовываем второе уравнение, используя свойство отрицательной степени…

…и дорешиваем до ответа.

Остается вопрос — как понять, когда какой метод применять? Это приходит с опытом. А пока вы его не наработали, пользуйтесь общей рекомендацией для решения сложных задач – «не знаешь, что делать – делай, что можешь». То есть, ищите как вы можете преобразовать уравнение в принципе, и пробуйте это делать – вдруг чего и выйдет? Главное при этом делать только математически обоснованные преобразования.

Показательные уравнения, не имеющие решений

Разберем еще две ситуации, которые часто ставят в тупик учеников:
— положительное число в степени равно нулю, например, \(2^x=0\);
— положительное число в степени равно отрицательному числу, например, \(2^x=-4\).

Давайте попробуем решить перебором. Если икс — положительное число, то с ростом икса вся степень \(2^x\) будет только расти:

И так далее. Очевидно, что дальше увеличивать икс нет смысла, будет только «хуже» (т.е. мы будем удаляться от нуля и минус четверки).
Может быть нам поможет \(x=0\)? Проверяем:

Тоже мимо. Остаются отрицательные иксы. Вспомнив свойство \(a^<-n>=\frac<1>\), проверяем:

Несмотря на то, что число с каждым шагом становится меньше, до нуля оно не дойдет никогда. Так что и отрицательная степень нас не спасла. Приходим к логичному выводу:

Положительное число в любой степени останется положительным числом.

Таким образом, оба уравнения выше не имеют решений.

Показательные уравнения с разными основаниями

В практике порой встречаются показательные уравнения с разными основаниями, не сводимыми к друг к другу, и при этом с одинаковыми показателями степени. Выглядят они так: \(a^=b^\), где \(a\) и \(b\) – положительные числа.

Такие уравнения легко можно решить делением на любую из частей уравнения (обычно делят на правую часть, то есть на \(b^\). Так делить можно, потому что положительное число в любой степени положительно (то есть, мы не делим на ноль). Получаем:

Дальше решаем с помощью свойств степени.

Здесь у нас не получиться ни пятерку превратить в тройку, ни наоборот (по крайней мере, без использования логарифмов ). А значит мы не можем прийти к виду \(a^=a^\). При этом показатели одинаковы.
Давайте поделим уравнение на правую часть, то есть на \(3^\) (мы можем это делать, так как знаем, что тройка ни в какой степени не будет нулем).

Казалось бы, лучше не стало. Но вспомните еще одно свойство степени: \(a^0=1\), иначе говоря: «любое число в нулевой степени равно \(1\)». Верно и обратное: «единица может быть представлена как любое число в нулевой степени». Используем это, делая основание справа таким же как слева.

Вуаля! Избавляемся от оснований.

Иногда «одинаковость» показателей степени не очевидна, но умелое использование свойств степени решает этот вопрос.

Уравнение выглядит совсем печально… Мало того, что основания нельзя свести к одинаковому числу (семерка ни в какой степени не будет равна \(\frac<1><3>\)), так еще и показатели разные… Однако давайте в показателе левой степени вынесем за скобку двойку.

Аллилуйя! Показатели стали одинаковы!
Действуя по уже знакомой нам схеме, решаем до ответа.


источники:

http://fb.ru/article/413078/kakoe-uravnenie-ne-imeet-korney-primeryi-uravneniy

http://cos-cos.ru/math/145/