Решите уравнение корень 6 5x x

sqrt(6+5*x)=x (уравнение)

Найду корень уравнения: sqrt(6+5*x)=x

Решение

Дано уравнение
$$\sqrt <5 x + 6>= x$$
$$\sqrt <5 x + 6>= x$$
Возведём обе части ур-ния в(о) 2-ую степень
$$5 x + 6 = x^<2>$$
$$5 x + 6 = x^<2>$$
Перенесём правую часть уравнения левую часть уравнения со знаком минус
$$- x^ <2>+ 5 x + 6 = 0$$
Это уравнение вида

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_ <1>= \frac <\sqrt— b><2 a>$$
$$x_ <2>= \frac <- \sqrt— b><2 a>$$
где D = b^2 — 4*a*c — это дискриминант.
Т.к.
$$a = -1$$
$$b = 5$$
$$c = 6$$
, то

Т.к. D > 0, то уравнение имеет два корня.

© Контрольная работа РУ — калькуляторы онлайн

Где учитесь?

Для правильного составления решения, укажите:

Обычные ур-ния по-шагам

Результат

Примеры уравнений

  • Линейные ур-ния
  • Квадратные ур-ния
  • Тригонометрические ур-ния
  • Ур-ния с модулем
  • Логарифмические ур-ния
  • Показательные ур-ния
  • Уравнения с корнями
  • Кубические и высших степеней ур-ния
  • Ур-ния с численным решением

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

Немного теории.

Решение иррациональных уравнений и неравенств

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
\( \sqrt[\Large6\normalsize] = \sqrt[\Large6\normalsize] <2x-6>\)

Возведя обе части уравнения в шестую степень, получим:
\( x^2-5x = 2x-6 \Rightarrow \)
\( x^2-7x +6= 0 \Rightarrow \)
\( x_1=1, \; x_2=6 \)
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <-4>= \sqrt[\Large6\normalsize] <-4>\), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <6>= \sqrt[\Large6\normalsize] <6>\) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную \( u=x^2-x\), получим существенно более простое иррациональное уравнение:
\( \sqrt+\sqrt = \sqrt <2u+21>\).
Возведём обе части уравнения в квадрат:
\( (\sqrt+\sqrt)^2 = (\sqrt<2u+21>)^2 \Rightarrow \)
\( u+2 +2\sqrt\sqrt +u+7 = 2u+21 \Rightarrow \)
\( \sqrt <(u+2)(u+7)>= 6 \Rightarrow \)
\( u^2+9u+14=36 \Rightarrow \)
\( u^2+9u-22=0 \Rightarrow \)
\( u_1=2, \; u_2=-11 \)
Проверка найденных значений их подстановкой в уравнение \( \sqrt+\sqrt = \sqrt <2u+21>\) показывает, что \( u_1=2 \) — корень уравнения, а \( u_2=-11 \) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение \( x^2-x=2 \Rightarrow x^2-x-2=0 \), решив которое находим два корня: \( x_1=2, \; x_2=-1 \)
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
\( 2x^2 +6 -2\sqrt <2x^2-3x+2>= 3x+12 \Rightarrow \)
\( 2x^2 -3x +2 -2\sqrt <2x^2-3x+2>-8 = 0 \Rightarrow \)

Введя новую переменную \( y=\sqrt <2x^2-3x+2>\), получим: \( y^2-2y-8=0 \), откуда \( y_1=4, \; y_2=-2 \). Значит, исходное уравнение равносильно следующей совокупности уравнений:
\( \left[\begin \sqrt <2x^2-3x+2>=4 \\ \sqrt <2x^2-3x+2>= -2 \end\right. \)

Из первого уравнения этой совокупности находим: \( x_1=3<,>5; \; x_2=-2 \). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение \( \sqrt <2x^2-3x+2>=4\). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч \( [5; \; +\infty) \). В этой области выражение \( \sqrt \) можно представить следующим образом: \( \sqrt = \sqrt\sqrt \). Теперь уравнение можно переписать так:
\( x+x -5 +2\sqrt\sqrt +2\sqrt +2\sqrt -48 = 0 \Rightarrow \) \( (\sqrt)^2 +2\sqrt\sqrt +(\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \Rightarrow \) \( (\sqrt +\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \)

Введя новую переменную \( y= \sqrt +\sqrt \), получим квадратное уравнение \( y^2+2y-48=0 \), из которого находим: \( y_1=6, \; y_2=-8 \). Таким образом, задача свелась к решению совокупности уравнений:
\( \left[\begin \sqrt +\sqrt =6 \\ \sqrt +\sqrt = -8 \end\right. \)
Из первого уравнения совокупности находим \( x= \left( \frac<41> <12>\right)^2 \), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что \( x= \left( \frac<41> <12>\right)^2 \) — является корнем уравнения \( \sqrt +\sqrt =6 \). Но это уравнение равносильно исходному уравнению, значит, \( x= \left( \frac<41> <12>\right)^2 \) — является корнем и исходного уравнения.
Ответ: \( x= \left( \frac<41> <12>\right)^2 \)

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
\( \sqrt[\Large4\normalsize] <1-x>+ \sqrt[\Large4\normalsize] <15+x>=2 \)

Введём новые переменные: \( \left\<\begin u=\sqrt[\Large4\normalsize] <1-x>\\ v=\sqrt[\Large4\normalsize] <15+x>\end\right. \)

Тогда уравнение примет вид \(u+v=2\). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
\( \left\<\begin u^4=1-x \\ v^4= 15+x \end\right. \)

Сложим уравнения последней системы: \(u^4 +v^4 =16\). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
\( \left\<\begin u+v=2 \\ u^4 +v^4 =16 \end\right. \)
Решив её, находим: \( \left\<\begin u_1=0 \\ v_1 =2; \end\right. \) \( \left\<\begin u_2=2 \\ v_2 =0 \end\right. \)

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=0 \\ \sqrt[\Large4\normalsize] <15+x>=2; \end\right. \) \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=2 \\ \sqrt[\Large4\normalsize] <15+x>=0 \end\right. \)

Решив эту совокупность, находим: \(x_1=1, \; x_2=-15 \)

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
\( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>= \sqrt[\Large3\normalsize] <2x-1>\)

Возведём обе части уравнения в куб:
\( 2x+1 + 3\sqrt[\Large3\normalsize] <(2x+1)^2>\cdot \sqrt[\Large3\normalsize] <6x+1>+ 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <(6x+1)^2>+6x+1 = 2x-1 \Rightarrow \) \( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot (3\sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>) = -6x-3 \)

Воспользовавшись исходным уравнением, заменим сумму \( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>\) на выражение \( \sqrt[\Large3\normalsize] <2x-1>\):
\( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot \sqrt[\Large3\normalsize] <2x-1>= -6x-3 \Rightarrow \)
\( 3\sqrt[\Large3\normalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 \)
Возведём обе части в куб:
\( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 \Rightarrow \)
\( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 \Rightarrow \)
\( 16x^2(2x+1) =0 \Rightarrow \)
\( x_1= -0<,>5; \; x_2=0 \)

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида \( \sqrt 0 \). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство \( \sqrt 0 \\ f(x) 0 \\ x^2-x-12 0 \\ x > -12 \end\right. \)

Получаем: \( x \geqslant 4\)


Ответ: \( x \geqslant 4\)

Рассмотрим теперь неравенство вида \( \sqrt > g(x) \).

Ясно, во-первых, что его решения должны удовлетворять условию \( f(x) \geqslant 0 \).
Во-вторых, замечаем, что при \( g(x) g(x) \) не вызывает сомнений.
В-третьих, замечаем, что если \( g(x) \geqslant 0 \), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство \( \sqrt > g(x) \) равносильно совокупности систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ g(x) (g(x))^2 \end\right. \)

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
\( \left\<\begin x^2-x-12 \geqslant 0 \\ x 0 \)

Преобразуем неравенство к виду \( x^2+3x-10 +3\sqrt >0 \) и введём новую переменную \( y= \sqrt \). Тогда последнее неравенство примет вид \( y^2+3y-10 >0 \), откуда находим, что либо \(y 2\).

Таким образом, задача сводится к решению совокупности двух неравенств:
\( \left[\begin \sqrt 2 \end\right. \)

Первое неравенство не имеет решений, а из второго находим:
\( x^2+3x >4 \Rightarrow \)
\( (x+4)(x-1) >0 \Rightarrow \)
\( x 1 \)
Ответ: \( x 1 \).


источники:

http://mrexam.ru/equation

http://www.math-solution.ru/math-task/irrational-equality-inequality