Решите уравнение методом феррари онлайн

Уравнение четвертой степени

Квадратные уравнения, уравнения третьей степени, уравнения четвертой степени – как это все не ново, но только жизнь такая штука, что стоит только покинуть стены родной школы, как все знания также покидают наши головы. Да и решение такого рода уравнений зачастую отнимает слишком много времени, которого в современном ритме жизни и так всегда не хватает.

Наш онлайн калькулятор поможет вам решить любое уравнение, особенно, он поможет тем, для кого ход решения не так важен как правильный ответ. Все что о вас может потребоваться это ввести искомые значения в уравнение и ровно через пару секунд вы получите значение всех неизвестных. Наш онлайн калькулятор это легко, просто и быстро!

Решение уравнений 4-ой степени. Метод Феррари

Схема метода Феррари
Приведение уравнений 4-ой степени
Разложение на множители. Кубическая резольвента
Пример решения уравнения 4-ой степени

Схема метода Феррари

Целью данного раздела является изложение метода Феррари , с помощью которого можно решать уравнения четвёртой степени

a0x 4 + a1x 3 + a2x 2 +
+ a3x + a4 = 0,
(1)

где a0, a1, a2, a3, a4 – произвольные вещественные числа, причем

Метод Феррари состоит из двух этапов.

На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Приведение уравнений 4-ой степени

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 4 + ax 3 + bx 2 +
+ cx + d = 0,
(2)

где a, b, c, d – произвольные вещественные числа.

Сделаем в уравнении (2) замену

(3)

где y – новая переменная.

то уравнение (2) принимает вид

В результате уравнение (2) принимает вид

Если ввести обозначения

то уравнение (4) примет вид

y 4 + py 2 + qy + r = 0,(5)

где p, q, r – вещественные числа.

Первый этап метода Феррари завершён.

Разложение на множители. Кубическая резольвента

Добавив и вычитая в левой части уравнения (5) выражение

где s – некоторое число, которое мы определим чуть позже, из (5) получим

Следовательно, уравнение (5) принимает вид

Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

то уравнение (6) примет вид

Избавляясь от знаменателя, уравнение (7) можно переписать в виде

или, раскрыв скобки, — в виде

Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

Если какое-нибудь решение кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

а также квадратное уравнение

Вывод метода Феррари завершен.

Пример решения уравнения 4-ой степени

Пример . Решить уравнение

x 4 + 4x 3 – 4x 2 –
– 20x – 5 = 0.
(12)

Решение . В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1.(13)

то в результате замены (13) уравнение (12) принимает вид

y 4 – 10y 2 – 4y + 8 = 0.(14)

В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10, q = – 4, r = 8.(15)

В силу (9) и (15) кубической резольвентой для уравнения (14) служит уравнение

которое при сокращении на 2 принимает вид:

s 3 + 5s 2 – 8s – 42 = 0.(16)
s = – 3.(17)

Подставляя значения (15) и (17) в формулу (10), получаем уравнение

Подставляя значения (15) и (17) в формулу (11), получаем уравнение

В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Замечание . При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y 4 – 10y 2 – 4y + 8 =
= (y 2 – 2y – 4) (y 2 +
+ 2y – 2).
(20)

Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

Решение уравнения 4-й степени

Калькулятор вычисляет корни уравнения 4-й степени используя резольвенту (уравнение 3-й степени).

Калькулятор ниже решает уравнение 4-й степени степени с одной неизвестной. В общем виде уравнение выглядит следующим образом: . В результате получается четыре комплексных или вещественных корня. Формулы, использующиеся для решения описаны сразу под калькулятором.

Уравнение 4-й степени

Первым шагом разделим все коэффициенты уравнения на a и получим эквивалентное уравнение следующего вида:

Далее решаем кубическое уравнение вида:

Это уравнение можно решить, например, способом описанным тут: Кубическое уравнение.
Один вещественный корень этого уравнения u1 мы будем использовать далее для вычисления корней квадратных уравнений. Если вещественных корней уравнения несколько, то нужно выбрать среди них один u1 таким образом, чтобы p и q в следующих выражениях были тоже вещественными:

Вычислив p1, p2,q1,q2, подставляем их в квадратные уравнения в правой части следующего выражения:
1

Четыре корня двух квадратных уравнений в правой части будут соответствовать корням исходного уравнения. Знаки в выражениях для pi и qi выбираются таким образом, чтобы выполнялись условия:

#условие
1
2
3
4

Фактически можно проверить только третье условие и если оно не выполняется — поменять q1 и q2 местами.
Решение можно проверить, получив значение полинома при помощи этого калькулятора: Вычисление значения полинома с комплексными числами.

M. Abramovitz и I. Stegun Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, 10th printing, Dec 1972, стр.17-18 ↩


источники:

http://www.resolventa.ru/spr/algebra/ferrary.htm

http://planetcalc.ru/7715/