Решите уравнение с заменой переменной

Метод замены переменной

Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.

Этот метод один из самых популярных при решении сложных заданий, в частности, в ЕГЭ и ОГЭ.

У нас довольно сложное уравнение. А если раскрыть скобки, оно станет еще сложнее. Что делать? Давайте попробуем заменить переменную.

Заменим выражение \(x+\frac<1>\) буквой \(t\).

Получилось обычное квадратное уравнение! Решив его, найдем чему равно \(t\), после чего, сделав обратную замену, вычислим \(x\).

Когда не стоит вводить новую переменную? Когда это не сделает уравнение проще. Например, если старая переменная остается, несмотря на замену:

Попробуем сделать замену здесь.

Заменим выражение \(\sin x\) буквой \(t\).

Видим, что в этой замене нет никакого смысла – она не упростила уравнение, даже наоборот, усложнила его, потому что теперь у нас в уравнении две переменные.

Примеры использования метода замены переменной

Заметим, что \(x^4=(x^2 )^2\) (см. свойства степеней ). Тогда наше уравнение приобретает следующий вид.

Теперь используем метод замены.

Вводим новую переменную, заменяя \(x^2\) на \(t\).

Мы нашли чему равно \(t\), но найти-то надо иксы! Поэтому делаем обратную замену.

Ответ: \(±1\); \(±\) \(\frac<1><2>\) .

Весьма частая ошибка при использовании этого метода: забыть «вернуться к иксам», то есть не сделать обратную замену. Помните – нам нужно найти \(x\), а не \(t\)! Поэтому возврат к \(x\) — строго обязателен!

Пример. Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Приступим к решению.

Раскладываем левую часть неравенства на множители .

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к совокупности , имеющей такое же решение, и сделаем обратную замену.

Метод замены переменных при решении уравнений и неравенств

Метод замены переменных

Этот распространённый метод используется для разных целей: упрощение задачи и повышение её наглядности, придание уравнению (неравенству, системе и проч.) более симметричного вида, сведение одного уравнения к системе нескольких уравнений, рационализация иррациональностей (см. пункт 3.3) и т.д. Иными словами, введение новых переменных производится в тех случаях, когда есть возможность свести задачу к другой, для которой существует более эффективный способ решения.

Существуют виды уравнений, для которых разработаны специальные подстановки, позволяющие наиболее оптимально решать эти уравнения (например, симметрические и возвратные уравнения, однородные уравнения и многие другие). Рассмотрим дополнительно группу примеров, иллюстрирующих различные цели использования этого подхода.

Начнём с примера, в котором при помощи замены неизвестной рациональное неравенство сводится также к рациональному, но более простому алгебраическому неравенству.

Пример №350.

Решение:

Положим . Тогда необходимо решить неравенство . Выполнив обратную подстановку, получим квадратное уравнение , решив которое, приходим к ответу. Ответ:

В следующем примере дробно-рациональное уравнение заменой сводится к целому алгебраическому уравнению.

Пример №351.

Решить уравнение

Решение:

Обозначим разность через , тогда уравнение перепишется в виде Это уравнение имеет два корня и , что приводит к совокупности уравнений

Первое уравнение даёт корни , а второе — которые и будут решениями исходного уравнения.

В некоторых случаях алгебраическую задачу (даже если в её условиях не содержится радикалов) с помощью специальных тригонометрических подстановок бывает целесообразно свести к тригонометрической задаче, и далее уже решать её методами тригонометрии.

Пример №352.

Известно, что и . Чему равно значение ?

Решение:

Воспользуемся тем, что если два действительных числа X, у удовлетворяют равенству

где — заданное число, то и можно представить в тригонометрическом виде , где . В самом деле, уравнение (1) задаёт на плоскости окружность радиуса с центром в начале координат. При изменении от до точка с координатами ровно один раз обходит окружность, и таким образом между точками окружности и полуинтервалом оказывается установлено взаимно однозначное соответствие. Это означает, что каждому значению из соответствует единственная пара чисел , удовлетворяющих равенству (1), и наоборот, каждой паре чисел, удовлетворяющих (1), соответствует единственное значение из .

Итак, поскольку числа удовлетворяют равенству , то найдётся такое число , что , . Аналогично, поскольку числа удовлетворяют равенству , то найдётся такое число, что , . При этом условие примет вид

Выполнив тригонометрическую подстановку в искомом выражении , получим:

Введение новых переменных может быть вызвано необходимостью понизить степень уравнения, упростив при этом решение задачи.

Пример №353.

Решить уравнение

Решение:

Сведём данное уравнение 4-й степени к квадратному уравнению. Для этого вначале умножим обе части уравнения на 12 и приведём его к виду

Затем сделаем подстановку , что приведёт к уравнению

Сделав ещё одну подстановку , сведём окончательно данное биквадратное уравнение к квадратному уравнению , решив которое, находим корни . Тогда и

Ответ:

В следующем примере используется симметризирующая подстановка. Название говорит само за себя: уравнению придаётся более «симметричный» вид. Новая переменная является средним арифметическим входящих в уравнение выражений. При её применении уравнение 4-й степени общего вида приводится к более простому частному случаю, а именно, симметризация уравнения позволяет «убрать» из уравнения нечётные степени неизвестной, оставив только чётные и превратив его, таким образом, в биквадратное уравнение.

Пример №354.

Решение:

Выполним симметризирующую подстановку

Тогда уравнение примет вид

Ответ:

6.Близко к методу введения новых переменных стоит так называемый метод введения параметра. Не всегда введение параметра усложняет задачу. На примере, рассмотренном ниже, видно, как включение параметра в уравнение вместо числового коэффициента позволяет лучше «разглядеть» способ дальнейшего его решения — рассмотрение уравнения как квадратного относительно введённой величины.

Пример №355.

Решение:

Введём в уравнение параметр, положив :

Рассмотрим теперь это уравнение как квадратное относительно . Приведём его к стандартному виду и вычислим дискриминант Найдём корни:

т.е. или . Параметр к этому моменту сыграл свою положительную роль, позволив свести решение кубического относительно уравнения к совокупности двух уравнений более низкой степени: квадратного и линейного.

Заменяя числом , получим совокупность

Отсюда находим решения:

Замечание. В формуле корней квадратного уравнения более корректным было, вообще говоря, написать

Однако когда ищутся оба корня, то использование формул (1) и (2) приводит к одному результату. Именно поэтому часто в подобных ситуациях модуль опускают.

7.Отметим, что, вообще говоря, не всегда в задаче нужно полностью переходить к новым переменным. Иногда имеет смысл, вводя новую переменную, сохранить в задаче и первоначальную переменную, т.е. сделать частичную замену переменных. Так, сведением к системе уравнений, решаются некоторые уравнения. Рассмотрим в качестве пояснения пример.

Пример №356.

Решение:

Так как не является корнем, то уравнение можно привести к равносильному виду

Положим , тогда уравнение сведётся к равносильной ему системе

Решая эту систему относительно и , приходим к ответу:

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Эти страницы возможно вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Алгебра

План урока:

Простейшие показательные уравнения а х = b

Его называют показательным уравнением, ведь переменная находится в показателе степени. Для его решения представим правую часть как степень числа 2:

Тогда уравнение будет выглядеть так:

Теперь и справа, и слева стоят степени двойки. Очевидно, что число 3 будет являться его корнем:

Является ли этот корень единственным? Да, в этом можно убедиться, если построить в координатной плоскости одновременно графики у = 2 х и у = 8. Второй график представляет собой горизонтальную линию.

Пересекаются эти графики только в одной точке, а потому найденное нами решение х = 3 является единственным.

Так как любая показательная функция является монотонной, то есть либо только возрастает (при основании, большем единицы), либо только убывает (при основании, меньшем единицы), то в общем случае ур-ние а х = b может иметь не более одного решения. Это является следствием известного свойства монотонных функций – горизонтальная линия пересекает их не более чем в одной точке.

Сразу отметим, что если в ур-нии вида а х = b число b не является положительным, то корней у ур-ния не будет вовсе. Это следует из того факта, что область значений показательной функции – промежуток (0; + ∞), ведь при возведении в степень любого положительного числа результат всё равно остается положительным. Можно проиллюстрировать это и графически:

Решая простейшее показательное уравнение

мы специально представляли правую часть как степень двойки:

После этого мы делали вывод, что если в обеих частях ур-ния стоят степени с равными основаниями (2 = 2), то у них должны быть равны и показатели. Это утверждение верно и в более общем случае. Если есть ур-ние вида

то его единственным решением является х = с.

Задание. Найдите решение показательного уравнения

Решение. У обоих частей равны основания, значит, равны и показатели:

Задание. Найдите корень уравнения

Решение. Заметим, что число 625 = 5 4 . Тогда ур-ние можно представить так:

Отсюда получаем, что х = 4.

Видно, что основной метод решения показательных уравнений основан на его преобразовании, при котором и в правой, и в левой части стоят степени с совпадающими основаниями.

Задание. При каком х справедливо равенство

Решение. Преобразуем число справа:

Теперь ур-ние можно решить:

Задание. Решите ур-ние

Решение. Любое число при возведении в нулевую степень дает единицу, а потому можно записать, что 1 = 127 0 . Заменим с учетом этого правую часть равенства:

Уравнения вида а f( x) = a g ( x)

Рассмотрим чуть более сложное показательное ур-ние

Для его решения заменим показатели степеней другими величинами:

Теперь наше ур-ние принимает вид

Такие ур-ния мы решать умеем. Надо лишь приравнять показатели степеней:

При решении подобных ур-ний введение новых переменных опускают. Можно сразу приравнять показатели степеней, если равны их основания:

В общем случае использованное правило можно сформулировать так:

Задание. Найдите корень ур-ния

Решение. Представим правую часть как степень двойки:

Тогда ур-ние примет вид

Теперь мы имеем право приравнять показатели:

Задание. Укажите значение х, для которого выполняется условие

Решение. Здесь удобнее преобразовать не правую, а левую часть. Заметим, что

С учетом этого можно записать

Основания у выражений слева и справа совпадают, а потому можно приравнять показатели:

Задание. Укажите корень показательного уравнения

Решение. Для перехода к одному основанию представим число 64 как квадрат восьми:

Тогда ур-ние примет вид:

Задание. Найдите корень ур-ния

Решение. Здесь ситуация чуть более сложная, ведь число 2 невозможно представить как степень пятерки, а пятерки не получится выразить как степень двойки. Однако у обеих степеней в ур-нии совпадают показатели. Напомним, что справедливы следующие правила работы со степенями:

С учетом этого поделим обе части ур-ния на выражения 5 3+х :

Задание. При каких х справедлива запись

Можно сделать преобразования, после которых в ур-нии останется только показательная функция 5 х . Для этого произведем следующие замены:

Перепишем исходное ур-ние с учетом этих замен:

Теперь множитель 5 х можно вынести за скобки:

Рассмотрим чуть более сложное ур-ние, которое может встретиться на ЕГЭ в задании повышенной сложности №13.

Задание. Найдите решение уравнения

Решение. Преобразуем левое слагаемое:

Перепишем начальное ур-ние, используя это преобразование

Теперь мы можем спокойно вынести множитель за скобки:

Получили одинаковые основания слева и справа. Значит, можно приравнять и показатели:

Это квадратное уравнение, решение которого не должно вызывать у десятиклассника проблем:

Задачи, сводящиеся к показательным уравнениям

Рассмотрим одну прикладную задачу, встречающуюся в ЕГЭ по математике.

Задание. Из-за радиоактивного распада масса слитка из изотопа уменьшается, причем изменение его массы описывается зависимостью m(t) = m0 • 2 – t/ T , где m0 – исходная масса слитка, Т – период полураспада, t – время. В начальный момент времени изотоп, чей период полураспада составляет 10 минут, весит 40 миллиграмм. Сколько времени нужно подождать, чтобы масса слитка уменьшилась до 5 миллиграмм.

Решение. Подставим в заданную формулу значения из условия:

m0 = 40 миллиграмм;

m(t) = 5 миллиграмм.

В результате мы получим ур-ние

из которого надо найти значение t. Поделим обе части на 40:

Далее решим чуть более сложную задачу, в которой фигурирует сразу 2 радиоактивных вещества.

Задание. На особо точных рычажных весах в лаборатории лежат два слитка из радиоактивных элементов. Первый из них весит в начале эксперимента 80 миллиграмм и имеет период полураспада, равный 10 минутам. Второй слиток весит 40 миллиграмм, и его период полураспада составляет 15 минут. Изначально весы наклонены в сторону более тяжелого слитка. Через сколько минут после начала эксперимента весы выровняются? Масса слитков меняется по закону m(t) = m0 • 2 – t/ T , где m0 и Т – это начальная масса слитка и период его полураспада соответственно.

Решение. Весы выровняются тогда, когда массы слитков будут равны. Если подставить в данную в задаче формулу условия, то получится, что масса первого слитка меняется по закону

а масса второго слитка описывается зависимостью

Приравняем обе формулы, чтобы найти момент времени, когда массы слитков совпадут (m1 = m2):

Делим обе части на 40:

Основания равны, а потому приравниваем показатели:

Уравнения с заменой переменных

В ряде случаев для решения показательного уравнения следует ввести новую переменную. В учебных заданиях такая замена чаще всего (но не всегда) приводит к квадратному ур-нию.

Задание. Решите уравнение методом замены переменной

Заметим, что в уравнении стоят степени тройки и девятки, но 3 2 = 9. Тогда введем новую переменную t = 3 x . Если возвести ее в квадрат, то получим, что

C учетом этого изначальное ур-ние можно переписать:

Получили обычное квадратное ур-ние. Решим его:

Мы нашли два значения t. Далее необходимо вернуться к прежней переменной, то есть к х:

Первое ур-ние не имеет решений, ведь показательная функция может принимать лишь положительные значения. Поэтому остается рассмотреть только второе ур-ние:

Задание. Найдите корни ур-ния

Решение. Здесь в одном ур-нии стоит сразу три показательных функции. Попытаемся упростить ситуацию и избавиться от одной из них. Для этого поделим ур-ние на выражение 4 4х+1 :

Так как 1 4х+1 = 1, мы можем записать:

Обратим внимание, что делить ур-ние на выражение с переменной можно лишь в том случае, если мы уверены, что оно не обращается в ноль ни при каких значениях х. В данном случае мы действительно можем быть в этом уверены, ведь величина 4 4х+1 строго положительна при любом х.

Вернемся к ур-нию. В нем стоят величины (9/4) 4х+1 и (3/2) 4х+1 . У них одинаковые показатели, но разные степени. Однако можно заметить, что

9/4 = (3/2) 2 , поэтому и (9/4) 4х+1 = ((3/2) 4х+1 ) 2 . Это значит, что перед нами уравнение с заменой переменных.

Произведем замену t = (3/2) 4х+1 , тогда (9/4) 4х+1 = ((3/2) 4х+1 ) 2 = t 2 . Далее перепишем ур-ние с новой переменной t:

Снова получили квадратное ур-ние.

Возвращаемся к переменной х:

И снова первое ур-ние не имеет корней, так как при возведении положительного числа в степень не может получится отрицательное число. Остается решить второе ур-ние:

Графическое решение показательных уравнений

Не всякое показательное уравнение легко или вообще возможно решить аналитическим способом. В таких случаях выручает графическое решение уравнений.

Задание. Найдите графическим способом значение х, для которого справедливо равенство

Решение. Построим в одной системе координат графики у = 3 х и у = 4 – х:

Видно, что графики пересекаются в одной точке с примерными координатами (1; 3). Так как графический метод не вполне точный, следует подставить х = 1 в ур-ние и убедиться, что это действительно корень ур-ния:

Получили верное равенство, значит, х = 1 – это действительно корень ур-ния.

Задание. Решите графически ур-ние

Решение. Перенесем вправо все слагаемые, кроме 2 х :

Слева стоит показательная функция, а справа – квадратичная. Построим их графики и найдем точки пересечения:

Видно, что у графиков есть две общие точки – это (0;1) и (1; 2). На всякий случай проверим себя, подставив х = 0 и х = 1 в исходное ур-ние:

Ноль подходит. Проверяем единицу:

И единица тоже подошла. В итоге имеем два корня, 0 и 1.

Показательные неравенства

Рассмотрим координатную плоскость, в которой построен график некоторой показательной ф-ции у = а х , причем а > 0. Пусть на оси Ох отложены значения s и t, и t t и a s на оси Оу. Так как

является возрастающей функцией, то и величина a t окажется меньше, чем a s . Другими словами, точка a t на оси Оу будет лежать ниже точки а s (это наглядно видно на рисунке). Получается, что из условия t t s . Это значит, что эти два нер-ва являются равносильными.

С помощью этого правила можно решать некоторые простейшие показательные неравенства. Например, пусть дано нер-во

Представим восьмерку как степень двойки:

По только что сформулированному правилу можно заменить это нер-во на другое, которое ему равносильно:

Решением же этого линейного неравенства является промежуток (– ∞; 3).

Однако сформулированное нами правило работает тогда, когда основание показательной ф-ции больше единицы. А что же делать в том случае, если оно меньше единицы? Построим график такой ф-ции и снова отложим на оси Ох точки t и s, причем снова t будет меньше s, то есть эта точка будет лежать левее.

Так как показательная ф-ция у = а х при основании, меньшем единицы, является убывающей, то окажется, что на оси Оу точка a s лежит ниже, чем a t . То есть из условия t t > a s . Получается, что эти нер-ва равносильны.

Например, пусть надо решить показательное неравенство

Выразим число слева как степень 0,5:

Тогда нер-во примет вид

По рассмотренному нами правилу его можно заменить на равносильное нер-во

В более привычном виде, когда выражение с переменной стоит слева, нер-во будет выглядеть так:

а его решением будет промежуток (3; + ∞).

В общем случае мы видим, что если в показательном нер-ве вида

основание a больше единицы, то его можно заменить равносильным нер-вом

Грубо говоря, мы просто убираем основание степеней, а знак нер-ва остается неизменным. Если же основание а меньше единицы, то знак неравенства необходимо поменять на противоположный:

Это правило остается верным и в том случае, когда вместо чисел или переменных t и s используются произвольные функции f(x) и g(x). Сформулируем это правило:

Таким образом, для решения показательных неравенств их следует преобразовать к тому виду, при котором и справа, и слева стоят показательные ф-ции с одинаковыми показателями, после чего этот показатель можно просто отбросить. Однако надо помнить, что при таком отбрасывании знак нер-ва изменится на противоположный, если показатель меньше единицы.

Задание. Решите простейшее неравенство

Представим число 64 как степень двойки:

теперь и справа, и слева число 2 стоит в основании. Значит, его можно отбросить, причем знак нер-ва останется неизменным (ведь 2 > 1):

Задание. Найдите промежуток, на котором выполняется нер-во

Решение. Так как основание степеней, то есть число 0,345, меньше единицы, то при его «отбрасывании» знак нер-ва должен измениться на противоположный:

Это самое обычное квадратное неравенство. Для его решения нужно найти нули квадратичной функции, стоящей слева, после чего отметить их на числовой прямой и определить промежутки, на которых ф-ция будет положительна.

Нашли нули ф-ции. Далее отмечаем их на прямой, схематично показываем параболу и расставляем знаки промежутков:

Естественно, что в более сложных случаях могут использоваться всё те же методы решения нер-ва, которые применяются и в показательных ур-ниях. В частности, иногда приходится вводить новую переменную.

Задание. Найдите решение нер-ва

Решение. Для начала представим число 3 х+1 как произведение:

Теперь перепишем с учетом этого исходное нер-во:

Получили дробь, в которой есть одна показательная ф-ция 3 х . Заменим её новой переменной t = 3 x :

Это дробно-рациональное неравенство, которое можно заменить равносильным ему целым нер-вом:

которое, в свою очередь, решается методом интервалов. Для этого найдем нули выражения, стоящего слева

Отмечаем найденные нули на прямой и расставляем знаки:

Итак, мы видим, что переменная t должна принадлежать промежутку (1/3; 9), то есть

Теперь произведем обратную замену t = 3 x :

Так как основание 3 больше единицы, просто откидываем его:

Итак, мы узнали о показательных уравнениях и неравенствах и способах их решения. В большинстве случаев необходимо представить обе части равенства или неравенства в виде показательных степеней с одинаковыми основаниями. Данное действие иногда называют методом уравнивания показателей. Также в отдельных случаях может помочь графический способ решения ур-ний и замена переменной.


источники:

http://lfirmal.com/metod-zamenyi-peremennyih-pri-reshenii-uravnenij-i-neravenstv/

http://100urokov.ru/predmety/urok-7-uravneniya-pokazatelnye