Ромб составить уравнение его сторон

Ромб. Формулы, признаки и свойства ромба

Рис.1Рис.2

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

a =S
ha

2. Формула стороны ромба через площадь и синус угла:

a =√ S
√ sinα
a =√ S
√ sinβ

3. Формула стороны ромба через площадь и радиус вписанной окружности:

a =S
2 r

4. Формула стороны ромба через две диагонали:

a =√ d 1 2 + d 2 2
2

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

a =d 1
√ 2 + 2 cosα
a =d 2
√ 2 — 2 cosβ

6. Формула стороны ромба через большую диагональ и половинный угол:

a =d 1
2 cos ( α /2)
a =d 1
2 sin ( β /2)

7. Формула стороны ромба через малую диагональ и половинный угол:

a =d 2
2 cos ( β /2)
a =d 2
2 sin ( α /2)

8. Формула стороны ромба через периметр:

a =Р
4

Диагонали ромба

Формулы определения длины диагонали ромба:

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

7. Формулы диагоналей через площадь и другую диагональ:

d 1 =2S
d 2
d 2 =2S
d 1

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

d 1 =2 r
sin ( α /2)
d 2 =2 r
sin ( β /2)

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Площадь ромба

Формулы определения площади ромба:

4. Формула площади ромба через две диагонали:

S =1d 1 d 2
2

5. Формула площади ромба через синус угла и радиус вписанной окружности:

S =4 r 2
sinα

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S =1d 1 2 · tg ( α /2)
2
S =1d 2 2 · tg ( β /2)
2

Окружность вписанная в ромб

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

r =h
2

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

r =S
2 a

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

r =√ S · sinα
2

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

r =a · sinα
2
r =a · sinβ
2

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

r =d 1 · sin ( α /2)
2
r =d 2 · sin ( β /2)
2

6. Формула радиуса круга вписанного в ромб через две диагонали:

r =d 1 · d 2
2√ d 1 2 + d 2 2

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

r =d 1 · d 2
4 a

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Сторона ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти длину стороны ромба по известным элементам. Для нахождения стороны ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

1. Сторона ромба через высоту и площадь

Пусть известны площадь и высота ромба (Рис.1).

Покажем, что сторона ромба через высоту и площадь вычисляется формулой

\(\small a=\frac<\large S><\large h>.\)(1)

Формула площади ромба через сторону и высоту имеет следующий вид:

\(\small S=a \cdot h.\)

Откуда легко вывести формулу (1).

2. Сторона ромба через высоту и угол

Рассмотрим ромб с высотой h и углом α между сторонами (Рис.2). Выведем формулу вычисления стороны ромба через высоту и угол.

Для прямоугольного треугольника AHB применим теорему синусов:

\(\small \frac<\large a><\large \sin 90°>=\frac<\large h><\large \sin \alpha>.\)

Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:

\(\small a=\frac<\large h><\large \sin \alpha>.\)(2)

Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: \(\small \angle C=180°-\alpha.\) Следовательно \(\small \sin \angle C=\sin(180°-\alpha)=\sin \alpha.\) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.

3. Сторона ромба через диагонали

Выведем формулу вычисления сторон ромба через диагонали.

Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).

Применим к прямоугольному треугольнику AOB теорему Пифагора:

\(\small a^2= \left( \frac<\large d_1> <\large 2>\right)^2+\left( \frac<\large d_2> <\large 2>\right)^2.\)
\(\small a= \frac<\sqrt<\large d_1^2+d_2^2>> <\large 2>\)(3)

4. Сторона ромба через угол и противолежащую диагональ

Пусть известны один из углов α=∠ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления сторон ромба.

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Кроме этого, диагонали ромба делят углы ромба пополам. Применим теорему синусов для прямоугольного треугольника AOB:

\(\small \frac<\large a><\large \sin 90°>=\frac<\large \frac<2>><\large \sin \frac<\alpha><2>>.\)

Откуда получим формулу стороны ромба через угол и противолежащую диагональ:

\(\small a=\frac<\large d><\large 2 \ \cdot \ \sin \frac< \alpha>< 2>>.\)(4)

Формулу (4) можно записать и в другом виде, применяя формулу синуса половинного угла:

\(\small \sin \frac< \alpha>< 2>=\sqrt<\frac<\large 1-\cos \alpha><\large 2 >>.\)(5)

Подставляя (5) в (4), получим:

\(\small a=\frac<\large d><\large 2 \ \cdot \ \sqrt<\frac<\large 1-\cos \alpha><\large 2 >>>.\)
\(\small a=\large \frac< d>< \sqrt< 2-2 \ \cdot \ \cos \alpha>>.\)(6)

5. Сторона ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.

Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Для прямоугольного треугольника AOB, имеем:

\(\small \frac<\large OB > <\large a>=\cos \angle ABO.\)(7)

Учитывая, что \( \small BO=\frac<\large d><\large 2>\) и \( \small \angle ABO=\frac<\large \alpha><\large 2>\), формулу (13) можно записать так:

\(\small \frac< \large \frac<\large d > <\large 2>><\large a>= \cos \frac<\large \alpha> <\large 2>.\)
\(\small a=\frac<\large d><\large 2 \ \cdot \ \cos \large \frac< \alpha>< 2>>.\)(8)

Формулу (8) можно записать и в другом виде, применяя формулу косинуса половинного угла:

\(\small \cos \frac< \alpha>< 2>=\sqrt<\frac<\large 1+\cos \alpha><\large 2 >>.\)(9)

Подставляя (9) в (8), получим:

\(\small a=\frac<\large d><\large 2 \ \cdot \ \sqrt<\frac<\large 1+\cos \alpha><\large 2 >>>.\)
\(\small a=\large \frac< d>< \sqrt< 2+2 \ \cdot \ \cos \alpha>>.\)(10)

6. Сторона ромба через площадь и радиус вписанной в ромб окружности

В статье Площадь ромба показали, что площадь ромба через сторону и радиус вписанной в ромб окружности вычисляется формулой

\(\small S= 2 \cdot a \cdot r.\)(11)

Из формулы (11) получим:

\( \small a=\frac<\large S> <\large 2 \ \cdot \ r>\)(12)

7. Сторона ромба через площадь и угол

В статье Площадь ромба показали, что площадь ромба через сторону и угол вычисляется формулой

\(\small S= a^2 \cdot \sin \alpha.\)(13)

Из формулы (13) найдем a:

\( \small a=\frac<\large S> <\large \sin \alpha>\)(14)

Получили формулу сторон ромба через площадь и угол.

Основные сведения о ромбах — формула нахождения ромба

Что такое ромб

Ромб — четырехугольник (параллелограмм), у которого все стороны равны.

Одним из видов ромба является квадрат.

Признаки ромба

Параллелограмм можно назвать ромбом, если выполняется хотя бы одно из следующих условий:

  1. Все стороны параллелограмма равны
  2. Диагонали параллелограмма пересекаются под прямым углом.
  3. Диагонали параллелограмма являются биссектрисами углов.

Основные свойства ромба

Ромб параллелограмм, следовательно, все свойства параллелограмма присущи и ромбу. Но можно выделить свойства, которые справедливы только для ромба.

  1. Диагонали ромба пересекаются под прямым углом.

2. Диагонали ромба являются его биссектрисами.

3. Сумма квадратов диагоналей равен четырем квадратом стороны.

A C 2 + B D 2 = 4 A B 2

Площадь ромба

  1. Площадь ромба равна половине произведения его диагоналей.

Формула 2

2. Площадь ромба равна произведению квадрата одной из сторон и синуса угла.

3. Площадь ромба равна произведению длины стороны ромба на высоту, опущенную к ней.

Примеры решения задач

Дано: ABCD — ромб. AC=24 ; BD=10

Решение: Составим уравнение исходя из третьего свойства ромба.
A C 2 + B D 2 = 4 A B 2

576 + 100 = 4 A B 2

Ответ: длина стороны AB=6.5

Дано: A B C D — р о м б ; ∠ A + ∠ C = 120 ° ; P A B C D = 68

1 способ — P = 68 = > A B = 68 : 4 = 17 = > A B = B C = D C = A D = 17 ;

2 способ — ∠A=∠D (по свойствам ромба) ; ∠ A = ∠ C = 120 : 2 = 60 °

∠B=∠D (по свойствам ромба) ; ∠ B = ∠ D = ( 360 — 120 ) : 2 = 120 °

▵ A B O — прямоугольный (т.к. диагонали в ромбе пересекаются под прямым углом)

∠ B A O = 30 ° (т.к. диагонали в ромбе являются его биссектрисами) = > B O = 8 . 5 (т.к. сторона в прямоугольном треугольнике, лежащая напротив угла 30°, равна половине гипотенузы)

B D = 8 . 5 x 2 = 17

Ответ: длина стороны BD=17

Задания для самостоятельной работы

Сумма двух углов ромба равна 120°, а его меньшая диагональ равна 15. Найдите периметр ромба.

Найдите площадь ромба, если его высота равна 2, а острый угол 30°.


источники:

http://matworld.ru/geometry/storona-romba.php

http://wika.tutoronline.ru/geometriya/class/8/osnovnye-svedeniya-o-rombah—formula-nahozhdeniya-romba