С энергетической точки зрения уравнение гидростатики

Основное уравнение гидростатики и его интерпретации

Основное уравнение гидростатики и его интерпретации

Основное уравнение гидростатики и его интерпретации. Деление обеих сторон уравнения (3.26)на ru дает основное гидростатическое уравнение. |Р = справляется(3.36) Или, учитывая (2.5)、 +Р-concomE(3.37) Рассмотрим физический смысл 2-х членов с размерностью линейной массы, которая входит в основное гидростатическое уравнение. В емкости любой формы находится жидкость с плотностью p. давление на свободной поверхности жидкости равно p0 (рис.3.8). 31.

Представьте себе, что вертикальная труба трубочки P0, а не трубочка, через которую происходит полное разбавление (так называемая пустота Торричелли), подводится к точке A, которая находится внутри неподвижной жидкости на глубине H. далее, ДиПо Р точки а горизонтальная линия жидкости поднимается вдоль этой трубки на определенную высоту H над точкой А, называемую высотой давления. Если предположить, что точка А принадлежит судну, то из зависимости (3.30): Р = Ро + РФ-(3.38).

Всякое внешнее давление, действующее на свободную поверхность жидкости, находящейся в равновесии, передается внутрь во все точки жидкости без изменения. Людмила Фирмаль

  • Та же точка давления, но принадлежит трубе П0. П = По + ппы-(3-39) От внешнего давления П0), p’O = 0 на поверхности жидкости в трубке образуется полный вакуум, высота давления которого равна (3.39) * «=Гг Строго говоря, пространство над жидкой горизонтальной линией П0 должно быть заполнено жидким паром. Однако в нормальном температурном диапазоне, предполагая, что давление на свободной поверхности жидкости в трубке равно нулю, давление насыщенного пара значительно ниже атмосферного, чем можно пренебречь.
  • Жидкость в состоянии покоя обладает определенным запасом потенциальной энергии, то есть способностью выполнять работу. Предполагая, что базовый объем жидкости массы cU сосредоточен в точке A, можно проделать некоторую работу. Во-первых, он падает с высоты r на плоскость xOy. Таким образом, для выбранной опорной плоскости существует определенный потенциальный запас энергии yeg = КУИ; (3.41) Во-вторых, путем поднятия давления p на высоту H * * накапливается потенциальная энергия, способная выполнить эту задачу ёЕр=ааНА. (3.42) потенциальная энергия жидкого основного объема.

Таким образом, для данного объема жидкости гидростатический напор относительно выбранной плоскости сравнения — величина постоянная. Людмила Фирмаль

  • В гидравлике принято иметь дело с так называемой удельной энергией Е, то есть энергией относительно единицы веса жидкости, находящейся в точке А. Затем удельная потенциальная энергия в точке выпуска =(3-45) Итак, с энергетической точки зрения сумма величин, входящих в основное гидростатическое уравнение (3.36) + 2-это конкретный P& То есть она относится к единице веса, то есть потенциальной энергии жидкости в точке issue. In это дело〜Часть удельной потенциальной энергии это удельная энергия давления, часть удельной потенциальной энергии это удельная энергия положения.

Смотрите также:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Методическое пособие «Основные законы гидравлики»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«РЯЗАНСКИЙ СТРОИТЕЛЬНЫЙ КОЛЛЕДЖ»

по дисциплине «Основы гидравлики, теплотехники и аэродинамики»

«Основные законы гидравлики»

Методическое пособие «Основные законы гидравлики» представляет собой краткий теоретический курс, в котором излагаются основные термины и положения.

Пособие рекомендуется в помощь студентам специальности «Монтаж и эксплуатация систем и оборудования газоснабжения» при аудиторной или внеаудиторной самостоятельной работе и преподавателю дисциплин «Основы гидравлики, теплотехники и аэродинамики», «Гидравлика».

В конце пособия приводится список вопросов для самоподготовки и список рекомендованной для изучения литературы.

Гидростатика, основные понятия……………………………………. 5

Основное уравнение гидростатики……………………………………7

Виды гидростатического давления…. 8

Закон Паскаля, применение на практике……………………………. 9

Закон Архимеда. Условие плавания тел……………………………..12

Гидродинамика, основные понятия………………………………….14

Уравнение неразрывности (сплошности)……………………………17

Уравнение Бернулли для идеальной жидкости……………………. 18

Уравнение Бернулли для реальной жидкости……………………….20

Вопросы для самостоятельной подготовки учащихся……………..22

Данное методическое пособие охватывает разделы «Гидростатика» и «Гидродинамика» дисциплины «Основы гидравлики, теплотехники и аэродинамики». В пособии изложены основные законы гидравлики, рассмотрены основные термины и положения.

Материал излагается в соответствии с требованиями учебного плана данной дисциплины и учебно-методическим комплексом по специальности «Монтаж и эксплуатация систем и оборудования газоснабжения».

Пособие представляет собой теоретический курс, его можно использовать при изучении отдельных тем учебной дисциплины, а также для внеаудиторной самостоятельной работы.

Пожалуйста, обратите внимание, что завершающим этапом данного методического пособия является список вопросов для самоподготовки учащихся по всем изложенным темам.

Пособие может быть рекомендовано для студентов очного и заочного обучения среднего профессионального образования, а также для преподавателей.

1. Гидростатика, основные понятия

Гидростатика — раздел гидравлики, изучающий законы равновесия жидкостей и их взаимодействие с ограничивающими поверхностями.

Рассмотрим жидкость, находящуюся в состоянии абсолютного равновесия, т.е. в состоянии покоя. Выделим внутри жидкости некоторый бесконечно малый объем  V и рассмотрим силы, действующие на него извне.

Существует два вида внешних сил – поверхностные и объемные (массовые).

Поверхностные силы — это силы, действующие непосредственно на внешнюю поверхность выделенного объема жидкости. Они пропорциональны площади этой поверхности. Такие силы обусловлены воздействием соседних объемов жидкости на данный объем или воздействием других тел.

Объемные (массовые) силы пропорциональны массе выделенного объема жидкости и действуют на все частицы внутри этого объема. Примерами объемных сил являются сила тяжести, центробежная сила, сила инерции и др.

Для характеристики внутренних сил, действующих на выделенный объем жидкости введем специальных термин. Для этого рассмотрим произвольный объем жидкости, находящейся в равновесии под действием внешних сил.

Внутри этого объема жидкости выделим очень малую площадку . Действующая на эту площадку сила нормальна (перпендикулярна) к ней, тогда соотношение:

представляет собой среднее гидростатическое давление, возникающее на площадке   . Иначе, можно охарактеризовать, что под действием внешних сил возникает напряженное состояние жидкости, характеризующееся возникновением гидростатического давления.

Чтобы определить точное значение р в данной точке, надо определить предел этого отношения при . что и определит истинное гидростатическое давление в данной точке:

Размерность [р] равна размерности напряжения, т.е.

[р]= [Па] или [кгс/м 2 ]

Свойства гидростатического давления

На внешней поверхности жидкости гидростатическое давление всегда направлено по внутренней нормали, а в любой точке внутри жидкости его величина не зависит от угла наклона площадки, на которой оно действует.

Поверхность, во всех точках которой гидростатическое давление одинаково называется поверхностью равного давления . К таким поверхностям относится и свободная поверхность , т. е. поверхность раздела между жидкостью и газообразной средой.

Давление измеряют с целью непрерывного контроля и своевременного регулирования всех технологических параметров. Для каждого технологического процесса разрабатывается специальная режимная карта. Известны случаи, когда при бесконтрольном повышении давления многотонный барабан энергетического котла улетал, словно футбольный мяч, на несколько десятков метров, разрушая все на своем пути. Снижение давления не несет разрушений, но приводит к:

браку продукции;

перерасходу топлива.

Основное уравнение гидростатики

Для любой точки жидкости, находящейся в состоянии равновесия, справедливо равенство

где p — давление в данной точке А (см. рис.); p 0 — давление на свободной поверхности жидкости; p/γ и p 0 /γ -высота столбов жидкости (с удельным весом γ), соответствующая давлениям в рассматриваемой точке и на свободной поверхности; z и z 0 — координаты точки А и свободной поверхности жидкости относительно произвольной горизонтальной плоскости сравнения (x0y); H — гидростатический напор. Из вышеприведенной формулы следует:

где h — глубина погружения рассматриваемой точки. Приведенные выше выражения называется основным уравнением гидростатики . Величина γ·h представляет вес столба жидкости высотой h.

Вывод: Гидростатическое давление p в данной точке равно сумме давления на свободной поверхности жидкости p 0 и давления, производимого столбом жидкости высотой, равной глубине погружения точки.

3. Виды гидростатического давления

Гидростатическое давление измеряется в системе СИ — Па. Кроме того, гидростатическое давление измеряется в кгс/см 2 , высотой столба жидкости (в м вод. ст., мм рт. ст. и т. д.) и в атмосферах физических (атм) и технических (ат).

Абсолютным называют давление, создаваемое на тело отдельно взятым газом без учета других атмосферных газов. Измеряют его в Па (паскалях). Абсолютное давление представляет собой сумму атмосферного и избыточного давлений.

Барометрическим (атмосферным) называют давление гравитации на все находящиеся в атмосфере предметы. Нормальное атмосферное давление создается 760 мм столбом ртути при температуре 0°С.

Вакуумом называют отрицательную разность между измеряемым и атмосферным давлением.

Разность между абсолютным давлением p и атмосферным давлением p а называется избыточным давлением и обозначается р изб :

h п в этом случае называется пьезометрической высотой , которая является мерой избыточного давления.

На рисунке показан закрытый резервуар с жидкостью, на поверхности которой давление p 0 . Подключенный к резервуару пьезометр П (см. рис. ниже) определяет избыточное давление в точке А .

Абсолютное и избыточное давления, выраженные в атмосферах, обозначаются соответственно ата и ати.

Вакуумметрическое давление, или вакуум , — недостаток давления до атмосферного (дефицит давления), т. е. разность между атмосферным или барометрическим и абсолютным давлением:

где h вак — вакуумметрическая высота, т. е. показание вакуумметра В , подключенного к резервуару, показанному на рисунке ниже. Вакуум выражается в тех же единицах, что и давление, а также в долях или процентах атмосферы.

Из последних двух выражений следует, что вакуум может изменяться от нуля до атмосферного давления; максимальное значение h вак при нормальном атмосферном давлении (760 мм рт. ст.) равно 10,33 м вод. ст.

4. Закон Паскаля, его применение на практике

Согласно основному уравнению гидростатики, давление на поверхности жидкости p 0 передается всем точкам объема жидкости и по всем направлениям одинаково. В этом и заключается закон Паскаля .

Этот закон был открыт французским ученым Б. Паскалем в 1653 г. Его иногда называют основным законом гидростатики.

Закон Паскаля можно объяснить с точки зрения молекулярного строения вещества. В твердых телах молекулы образуют кристаллическую решетку и колеблются около своих положений равновесия. В жидкостях и газах молекулы обладают относительной свободой, они могут перемещаться друг относительно друга. Именно эта особенность позволяет передавать давление, производимое на жидкость (или газ), не только в направлении действия силы, но и во всех направлениях.

Закон Паскаля нашел широкое применение в современной технике. На законе Паскаля основана работа современных суперпрессов, позволяющих создавать давления порядка 800 МПа. Также на этом законе построена работа систем гидроавтоматики, управляющей космическими кораблями, реактивными авиалайнерами, станками с числовым программным управлением, экскаваторами, самосвалами и т.д.

Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, например, известно, что атмосферное и гидростатическое давление уменьшается с высотой.

Рассмотрим самое известное устройство, использующее в принципе своего действия закон Паскаля. Это гидравлический пресс.

Ос­но­вой лю­бо­го гид­рав­ли­че­ско­го прес­са яв­ля­ют­ся со­об­ща­ю­щи­е­ся сосу­ды в виде двух ци­лин­дров. Диа­метр од­но­го ци­лин­дра зна­чи­тель­но меньше диа­мет­ра дру­го­го ци­лин­дра. Ци­лин­дры за­пол­не­ны жид­ко­стью, например, мас­лом. Свер­ху они плот­но за­кры­ты порш­ня­ми. Как видно из рисунка, приведенного ниже, пло­щадь од­но­го порш­ня S 1 во много раз меньше пло­ща­ди дру­го­го порш­ня S 2 .

До­пу­стим, к ма­ло­му порш­ню при­ло­же­на сила F 1 . Эта сила будет действо­вать на жид­кость, рас­пре­де­ля­ясь по пло­ща­ди S 1 . Дав­ле­ние, оказываемое малым порш­нем на жид­кость, можно рас­счи­тать по фор­му­ле:

По за­ко­ну Пас­ка­ля это дав­ле­ние будет пе­ре­да­вать­ся без из­ме­не­ний в любую точку жид­ко­сти. Это зна­чит, что дав­ле­ние, ока­зы­ва­е­мое на боль­шой пор­шень p 2 , будет таким же:

.

Таким об­ра­зом , сила, дей­ству­ю­щая на боль­шой пор­шень, будет во столь­ко раз боль­ше силы, при­ло­жен­ной к ма­ло­му порш­ню, во сколь­ко раз пло­щадь боль­шо­го порш­ня боль­ше пло­ща­ди ма­ло­го порш­ня.

В итоге гид­рав­ли­че­ская ма­ши­на поз­во­ля­ет по­лу­чить вы­иг­рыш в силе , рав­ный от­но­ше­нию пло­ща­ди боль­ше­го порш­ня к пло­ща­ди мень­ше­го порш­ня.

5. Закон Архимеда. Условие плавания тел

На тело, погруженное в жидкость, кроме силы тяжести, действует выталкивающая сила — сила Архимеда. Жидкость давит на все грани тела, но давление это неодинаково. Ведь нижняя грань тела погружена в жидкость больше, чем верхняя, а давление с глубиной возрастает. То есть сила, действующая на нижнюю грань тела, будет больше, чем сила, действующая на верхнюю грань. Поэтому возникает сила, которая пытается вытолкнуть тело из жидкости.

Значение архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.

Закон Архимеда : на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела.

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле:

где ρ ж – плотность жидкости, V пт – объем погруженной в жидкость части тела.

На тело, которое находится внутри жидкости, действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Существует три условия плавания тел:

если сила тяжести больше архимедовой силы, тело будет тонуть, опускаться на дно;

если сила тяжести равна силе Архимеда, то тело может находиться в равновесии в любой точке жидкости, тело плавает внутри жидкости;

если сила тяжести меньше архимедовой силы, тело будет всплывать, поднимаясь вверх.

Закон Архимеда используют и для воздухоплавания. Впервые воздушный шар в 1783 году создали братья Монгольфье. В 1852 году француз Жиффар создал дирижабль — управляемый аэростат с воздушным рулем и винтом.

6. Гидростатический парадокс

Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на различный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.

Это явление называется гидростатическим парадоксом и объясняется свойством жидкости передавать во все стороны производимое на нее давление.

В сосудах различной формы, но с одинаковой площадью дна и одинаковым уровнем жидкости в них, давление жидкости на дно будет одинаковым. Его можно рассчитать:

P = p  S = g  ρ  h  S

h – высота столба жидкости

Сила, с которой жидкость давит на дно сосуда не зависит от формы сосуда и равна весу вертикального столба, основанием которого является дно сосуда, а высотой – высота столба жидкости.

В 1618 г. Паскаль поразил своих современников, разорвав бочку всего кружкой воды, влитой в тонкую высокую трубку, вставленную в бочку.

7. Гидродинамика, основные понятия

Гидродинамикой называется раздел гидравлики, изучающий законы движения жидкостей под действием приложенных внешних сил и их взаимодействие с поверхностями.

Состояние движущейся жидкости в каждой ее точке характеризуется не только плотностью и вязкостью, но и главное – скоростью частиц жидкости и гидродинамическим давлением.

Основным объектом изучения является поток жидкости, под которым понимается движение массы жидкости, ограниченной полностью или частично какой-либо поверхностью. Ограничивающая поверхность может быть твердой (например, берега реки), жидкой (граница раздела между агрегатными состояниями) или газообразной.

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

υ = f(x, y, z) и р = f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным υ = f(x, y, z, t ) и р = f(x, y, z, t )

Примером установившегося движения может послужить истечение жидкости из сосуда с поддерживаемым постоянно уровнем через коническую трубку. Скорость движения жидкости в разных сечениях трубки будет различаться, но в каждом из сечений эта скорость будет постоянной, не изменяющейся во времени.

Если же в подобном опыте уровень жидкости в сосуде не поддерживать постоянным, то движение жидкости по той же конической трубке будет иметь нестационарный (неустановившийся) характер, поскольку в сечениях трубки скорость не будет постоянной во времени (будет уменьшаться с понижением уровня жидкости в сосуде).

Различают напорное и безнапорное движение жидкости. Если стенки полностью ограничивают поток жидкости, то движение жидкости называют напорным (например, перемещение жидкости по полностью заполненным трубам). Если же ограничение потока стенками частичное (например, движение воды в реках, каналах), то такое движение называют безнапорным.

Направление скоростей в потоке характеризуется линией тока.
Линия тока – воображаемая кривая, проведенная внутри потока жидкости таким образом, что скорости всех частиц, находящихся на ней в данный момент времени, касательны к этой кривой.

Линия тока отличается от траектории тем, что последняя отражает путь какой-либо одной частицы за некоторый промежуток времени, тогда как линия тока характеризует направление движения совокупности частиц жидкости в данный момент времени. При установившемся движении линии тока совпадает с траекториями движения частиц жидкости.

Если в поперечном сечении потока жидкости выделить элементарную площадку ΔS и провести через точки ее контура линии тока, то получится так называемая трубка тока . Жидкость, находящаяся внутри трубки тока, образует элементарную струйку . Поток жидкости можно рассматривать как совокупность всех движущихся элементарных струек.

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы – круг.

Смоченный периметр χ («хи») — часть периметра живого сечения, ограниченное твердыми стенками (на рис. он выделен утолщенной линией).

Гидравлический радиус потока R — отношение живого сечения к смоченному периметру

Расход потока Q — объем жидкости V, протекающей за единицу времени t, через живое сечение ω.

Средняя скорость потока υ — скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Уравнение неразрывности (сплошности)

Уравнение неразрывности течений вытекает из закона сохранения вещества и постоянства расхода жидкости по всему течению. Представим трубу с переменным живым сечением.

Расход жидкости через трубу в любом ее сечении постоянен, т.к. выполняется закон сохранения энергии. Также будем считать, что жидкость несжимаема. Таким образом, Q 1 = Q 2 = const, откуда

Или возможна другая запись этого уравнения:

Т.е. средние скорости v 1 и v 2 обратно пропорциональны соответствующим площадям живых сечений w 1 и w 2 потока жидкости.

Итак, уравнение неразрывности выражает постоянство объемного расхода Q , и условие неразрывности струи жидкости, по длине установившегося потока жидкости.

9. Уравнение Бернулли для идеальной жидкости

Уравнение Даниила Бернулли, полученное в 1738 г. показывает связь между давлением р, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β.

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость с расходом Q.

Для измерения давления жидкости применяют пьезометры — тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то получим ломаную линию (показана на рисунке).

Но высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0 (плоскости отсчета координат), называемой плоскостью сравнения, будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

Формулировка уравнения следующая:

Сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z 1 и z 2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2; — удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях; — удельные кинетические энергии в тех же сечениях.

Получается, что полная удельная энергия идеальной жидкости в любом сечении постоянна.

Также есть формулировка уравнения Бернулли с геометрической точки зрения. Каждый член уравнения имеет линейную размерность. z 1 и z 2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; — пьезометрические высоты; — скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.

10. Уравнение Бернулли для реальной жидкости

Уравнение Бернулли для потока реальной жидкости отличается от уравнения Бернулли для идеальной жидкости.

При движении реальной вязкой жидкости возникают силы трения, например, связанные с тем, что поверхность трубопровода обладает определенной шероховатостью, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии.

Потерянная энергия (потерянный напор) обозначаются имеет линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

По мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой).

Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.

Кроме этого в уравнении появились еще два коэффициента α 1 и α 2 , которые называются коэффициентами Кориолиса и зависят от режима течения жидкости (α = 2 для ламинарного режима, α = 1 для турбулентного режима).

Потерянная высота состоит из потерь напора по длине трубопровода, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока, например, задвижка, поворот трубы)

= h длин + h мест

С помощью уравнения Бернулли решается большинство задач практической гидравлики. Для этого выбирают два сечения по длине потока, таким образом, чтобы для одного из них были известны величины р, ρ, а для другого сечения одна или величины подлежали определению. При двух неизвестных для второго сечения используют уравнение постоянства расхода жидкости υ 1 ω 1 = υ 2 ω 2 .

11. Вопросы для самостоятельной подготовки учащихся

Благодаря действию каких сил тело плавает в воде? Объясните условия, при которых тело начинает тонуть.

В чем, по вашему мнению, заключается отличие идеальной жидкости от реальной? Существует ли идеальная жидкость в природе?

Какие виды гидростатического давления Вы знаете?

Если определять гидростатическое давление в точке жидкости на глубине h , то какие силы будут действовать на эту точку? Назовите и объясните ответ.

Какой физический закон лежит в основе уравнения неразрывности и уравнения Бернулли? Объясните ответ.

Назовите и кратко охарактеризуйте устройства, принцип действия которых основан на законе Паскаля.

В чем заключается физическое явление, называемое гидростатическим парадоксом?

Коэффициент Кориолиса, средняя скорость потока, давление, потери напора по длине трубопровода….Объясните какое уравнение, связывает все эти величины, и что еще не указано в этом перечислении.

Назовите формулу, связывающую удельный вес и плотность.

Уравнение неразрывности струи жидкости играет достаточно важную роль в гидравлике. Для какого вида жидкости оно справедливо? Объясните свой ответ.

Назовите фамилии всех ученых, названных в этом методическом пособии, и кратно поясните их открытия.

Существуют ли в окружающем нас мире идеальная жидкость, линия тока, вакуум? Объясните свой ответ.

Назовите приборы для измерения различных видов давления по схеме: «Вид давления….. – прибор …..».

Приведите примеры из повседневной жизни виды напорного и безнапорного движения жидкости, стационарного и неустановившегося.

Для каких целей применяются на практике пьезометр, барометр и трубка Пито?

Что произойдет, если при измерения давления обнаружат, что оно намного выше нормативных значений? А если меньше? Объясните свой ответ.

В чем отличие объектов изучения разделов «гидростатика» и «гидродинамика»?

Объясните геометрический и энергетический смысл уравнения Бернулли?

Смоченный периметр, живое сечение.…Продолжите этот список и объясните, что характеризуют перечисленные термины.

Перечислите, какие законы гидравлики Вы узнали из данного методического пособия, и какой физический смысл они в себе несут?

Надеюсь, что данное методическое пособие поможет студентам лучше усвоить учебный материал дисциплин «Гидравлика», «Основы гидравлики, теплотехники и аэродинамики» и главное – получить представление о самых «ярких» моментах изучаемой дисциплины, т.е. об основных законах гидравлики. На этих законах основана работа многих устройств, которые мы используем в работе и в повседневной жизни, часто даже не догадываясь об этом.

Хочу рекомендовать в дополнение к этому методическому пособию использовать приведенный ниже список литературы.

Основы гидравлики

Учебные вопросы:

Основные физические свойства жидкости.

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида:

Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами).

К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие

Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию.К газообразным жидкостям относятся все газы.

К основным физическим свойствам жидкости относятся:

Плотность — это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.

Используются также укрупненные показатели: – килопаскаль — 1 кПа= 103 Па; – мегапаскаль — 1 МПа = 106 Па.

Сжимаемость жидкости — это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.

В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости — ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.

Гидростатика

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практическое применение.

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением.

Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Гидростатическое давление обладает свойствами

  • Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.
  • Свойство 2. Гидростатическое давление неизменно во всех направлениях.
  • Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Основное уравнение гидростатики

Рассмотрим распространенный случай равновесия жидкости, когда на нее действует только одна массовая сила – сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объема жидкости. Это уравнение называется основным уравнением гидростатики.

Пусть жидкость содержится в сосуде (рис.8 ) и на ее свободную поверхность действует давление P0 . Найдем гидростатическое давление P в произвольно взятой точке М, расположенной на глубине h. Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем жидкости высотой h. Рассмотрим условие равновесия указанного объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь будет внешним и направлено по нормали внутрь объема, т.е. вверх.

Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикальную ось:

Последний член уравнения представляет собой вес жидкости, заключенный в рассматриваемом вертикальном цилиндре объемом hdS. Силы давления по боковой поверхности цилиндра в уравнение не входят, т.к. они перпендикулярны к этой поверхности и их проекции на вертикальную ось равны нулю. Сократив выражение на dS и перегруппировав члены, найдем:

Полученное уравнение называют основным уравнением гидростатики. По нему можно посчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости.

Пьезометрический и гидростатический напоры

Рассмотрим закрытый сосуд с жидкостью, к которому в точках А и В на произвольной глубине присоединены пьезометры I и II (рис. 9).

Давление на свободной поверхности в сосуде больше атмосферного. Трубка I сверху открыта и давление на свободной поверхности в ней равно атмосферному. Трубка II сверху запаяна, из нее удален воздух, т.е. давление в ней равно нулю.

Для определения вертикальных координат точек А и В проведем на произвольной высоте горизонтальную плоскость 0-0. Эта плоскость называется плоскостью сравнения. Вертикальное расстояние от плоскости сравнения до рассматриваемой точки называется геометрической высотой точки по отношению к плоскости сравнения и обозначается буквой. За плоскость сравнения может быть принят уровень земли, пола.

Так как давление в сосуде на свободной поверхности жидкости больше атмосферного, то в пьезометрических трубках I и II жидкость поднимется на большую высоту, чем уровень жидкости в сосуде. Обозначим высоту поднятия жидкости в открытом пьезометре через – пьезометрическая высота, а высоту поднятия жидкости в закрытом пьезометре через – приведенная высота.

Пьезометрическая высота – мера манометрического давления в точке А. Приведенная высота – мера абсолютного давления в точке В. Разность высот , равна высоте столба жидкости, соответствующей атмосферному давлению т.е. 10 м.в.ст.

Сумма геометрической высоты и пьезометрической для любой точки жидкости будет величиной постоянной и называется пьезометрическим напором:

Подставив это выражение в формулу (1) получим:

это сумма приведенной высоты и геометрической высоты положения, называемая гидростатическим напором Hs.

В уравнении (5) Hs=const для любой точки жидкости, а не зависит от положения точки. Значит:

Поэтому, сколько бы мы пьезометров не подключили, во всех пьезометрах жидкость установится на одном уровне: плоскость, соответствующая уровню П–П, называется пьезометрической плоскостью, а уровню Н–Н – напорной плоскостью.

Пьезометрический напор является мерой удельной потенциальной энергии жидкости. Предположим, что вес частицы жидкости в точке А. равен G. о отношении к плоскости сравнения О – О запас потенциальной энергии положения равен G*z, где -Z высота от плоскости О – О до точки А.

Под действием избыточного гидростатического давления Pm частица, находящаяся на глубине h , может подняться на высоту hp, то есть она обладает потенциальной энергией давления равной G*hp. Полная потенциальная энергия частицы жидкости весом G равна G*z+G*hp.

Удельная потенциальная энергия, т.е. энергия приходящаяся на единицу веса частицы будет соответственно равна:

Аналогично, гидростатический напор Hs является также мерой удельной потенциальной энергии жидкости, но большей по сравнению Hp на величину удельной потенциальной энергии атмосферного давления.

Вакуум. Закон Паскаля.

Вакуум — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлении значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного падения молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий, средний и высокий вакуум.

Насос для демонстрации вакуума

Законом Паскаля в гидростатике называется следующее утверждение,сформулированное французским учёным Блезом Паскалем: давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях.

На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, гидравлические процессы и др.

В законе Паскаля речь идет не о давлениях в разных точках гидравлической системы, а о возмущениях давления в разных точках, поэтому закон справедлив и для жидкости в поле силы тяжести.

В случае движущейся несжимаемой жидкости можно условно говорить о справедливости закона Паскаля, ибо добавление произвольной постоянной величины к давлению не меняет вида уравнения движения жидкости, однако в этом случае термин закон Паскаля обычно не применяется. Для сжимаемых жидкостей (газов) закон Паскаля, вообще говоря, несправедлив.

Виды движения жидкости

Виды движения жидкости бывают:

Неустановившимся – называют движение жидкости, все или некоторые характеристики которого изменяются во времени, т. е. давление и скорость зависят как от координат , так и от времени

Примерами неустановившегося движения являются опорожнение резервуаров, водохранилищ, движение воды в реках при переменном уровне (при паводках, сбросах воды через плотину) и т. д.

сброс воды через плотину

Установившимся – наз. движение жидкости неизменное во времени, при котором давление и скорость являются функциями только координат, но не зависит от времени. u = f1(x, y, z); p = f2(x, y, z).

Установившееся движение подразделяется на:

Равномерное движение характеризуется постоянством параметров по длине потока. Примерами такого движения являются движения в трубах постоянного сечения и в каналах правильной формы. Поле линий тока равномерного движения – семейство параллельных прямых.

При неравномерном движении скорость, глубина, площади сечений потока изменяются по его длине. Из неравномерных движений можно выделить так называемое плавно изменяющееся движение, которое характеризуется малой кривизной линий тока и малым углом расхождения линий тока .

В зависимости от причин, вызывающих движение, и условий, в которых оно происходит, различают:

  • напорное движение
  • безнапорное движение

Напорное движение происходит в потоке, со всех сторон ограниченном твердыми стенками. Давление во всех точках потока отлично от атмосферного и может быть как больше, так и меньше последнего. Движение происходит под действием разности давлений по длине потока, которая может быть создана водонапорной башней, питающим баком, насосной установкой.

Безнапорное движение происходит под действием силы тяжести при наличии свободной поверхности жидкости. Примерами безнапорного движения является движение в реках, каналах и трубах, когда сечение последних не полностью заполнено жидкостью.

Гидродинамика

Предметом изучения гидродинамики является движущаяся жидкость. Как было указано ранее, все без исключения физические и химические процессы, которые составляют основу промышленных технологических процессов, происходят в динамических условиях, в условиях движения текучих сред.

При движении жидкостей под воздействием внешних сил в потоках прежде всего формируются поля скоростей микро- и макрочастиц, которые определяют формирование температурных и полей концентраций веществ, что в конечном итоге обусловливает скорость протекания процессов.

На движущуюся жидкость, кроме сил, которые действовали на покоящуюся жидкость (поверхностные силы гидростатического давления и массовые силы: силы тяжести и внешние силы инерции), действуют дополнительные силы инерции и силы трения. В отличие от гидростатического давления, величина которого не зависит от ориентации поверхности, на которое оно действует, возникающее при движении гидродинамическое давление благодаря развитию напряжениям сдвига (касательным силам), различно в направлении осей X, Y и Z.

Наличие сил внутреннего трения между движущимися частицами жидкости (в соответствии с законом внутреннего трения Ньютона) является первопричиной различия скоростей движения в различных точках по поперечному сечению канала. Характер этого различия, который обусловливается характером связи между давлением и скоростью движения частиц в любой точке потока. Это и является основной задачей теории гидродинамики.

Уравнение неразрывности потока.

Уравнение неразрывности потока отражает закон сохранения массы: количество втекающей жидкости равно количеству вытекающей. Например, на рис. 15 расходы во входном и выходном сечениях напорной трубы равны: q1 = q2.

Схема к уравнению неразрывности потока.

С учётом, что q = Vw, получим уравнение неразрывности потока:

Если отсюда выразим скорость для выходного сечения:

то легко заметить, что она увеличивается обратно пропорционально площади живого сечения потока. Такая обратная зависимость между скоростью и площадью является важным следствием уравнения неразрывности и применяется в технике, например, при тушении пожара для получения сильной и дальнобойной струи воды.

Ламинарный и турбулентный режим движения жидкости.

Наблюдения показывают, что в природе существует два разных движения жидкости:

  • žслоистое упорядоченное течение – ламинарное движение, при котором слои жидкости скользят друг друга, не смешиваясь между собой;
  • žтурбулентное неурегулированное течение, при котором частицы жидкости движутся по сложным траекториям, и при этом происходит перемешивание жидкости.

От чего зависит характер движения жидкости, установил Рейнольдс в 1883 году путем. Эксперименты показали, что переход от ламинарного к турбулентному движению происходит при определенной скорости (критическая скорость), которая для труб различных диаметров неодинакова: при увеличении диаметра она увеличивается, критическая скорость так же увеличивается при увеличении вязкости жидкости. Рейнольдс вывел общие условия существования ламинарного и турбулентных режимов движения жидкости. По Рейнольдсу режима движения жидкости зависят от безразмерного числа, которое учитывает основные, определяющие это движение: среднюю скорость, диаметр трубы, плотность жидкости и ее абсолютную вязкость.

Это число называется числом Рейнольдса:

Число Рейнольдса, при котором происходит переход от одного режима движения жидкости в другой режим, называется критическим .

При числе Рейнольдса наблюдается ламинарный режим движения, при числе Рейнольдса – турбулентный режим движения жидкости. Чаще критическое значение числа принимают равным это значение соответствует переходу движения жидкости от турбулентного режима к ламинарного.

При переходе от ламинарного режима движения жидкости к турбулентному критическое значение имеет большее значение. Критическое значение числа Рейнольдса увеличивается в трубах, сужаются, и уменьшается в тех, что расширяются. Это объясняется тем, что при сужении поперечного сечения скорость движения частиц увеличивается, поэтому тенденция к поперечного перемещения уменьшается.

Уравнение Бернулли.

Закон (уравнение) Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

p — плотность жидкости,

v— скорость потока,

h— высота, на которой находится рассматриваемый элемент жидкости,

p— давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,

g— ускорение свободного падения.

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии .

Соотношение, близкое к приведенному выше, было получено в 1739 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли. В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Bernoulli Johann 1667-1748

СВОЙСТВА ГАЗОВ И ЖИДКОСТЕЙ

Список литературы:

ž1. В.П. Гусев «Основы гидравлики», Томск, 2009 г.

ž2. Бретшнайдер С. «Свойства газов и жидкостей», Москва


источники:

http://infourok.ru/metodicheskoe-posobie-osnovnye-zakony-gidravliki-4606396.html

http://fireman.club/presentations/osnovyi-gidravliki/