Самое сложное уравнение за 9 класс

Самые проблемные задания из ОГЭ по математике и как их решить?

Математика — это один из самых сложных экзаменов для 9 класса. Для его решения нужно владеть программой за 6-9 классы по математике в общем, алгебре и геометрии. И если часть заданий выполняется легко, с другими могут возникнуть серьезные проблемы.

Сколько задач в ОГЭ по математике?

Экзамен состоит из 25 заданий, среди которых 6 требуют развернутого решения, а 19 — краткого ответа.

При этом, максимальный балл можно получить, даже не решив одну из нетипичных задач второй части. А вот тестовые задания придется щелкать как орешки, даже если с ними возникают сложности.

Виды задач

Экзамен по математике делится на две части.

  1. Первая часть — задания с кратким ответом по темам:
    1. Простой счет.
    2. Выражения.
    3. Уравнения и неравенства.
    4. Последовательности чисел.
    5. Функции и графики.
    6. Координаты.
    7. Теория вероятностей.
    8. Геометрия.
  1. Вторая часть — задания с развернутым ответом по темам:
    1. Уравнения и неравенства.
    2. Функции и графики.
    3. Геометрия.

Задача 9 в ОГЭ по математике

Задание №9 — это квадратное уравнение, в ответ к которому надо записать единственный, больший или меньший из корней. Здесь может попасться уравнение двух типов — традиционное или дробно-рациональное.

Первый тип

Традиционное квадратное уравнение может быть двух форматов — приравненное к нулю или числу. Если первое уже готово к решению, то во втором число просто переносится к неизвестным (знак меняется на противоположный). На выходе мы получим уравнение типа: x2+ x -12 = 0.

Оно решается через дискриминант: D = b2– 4ac, где a — число рядом с квадратом, b — рядом с просто неизвестной, c — обычное число.

Здесь D = 1 – 4*1*(-12) = 49 = 72

Дальше находятся корни уравнения, то есть эти самые неизвестные. Формула: -b ± D2a. Здесь x1= -1 — 72= -4, а x2= -1 + 72= 3. Записывается в ответ требуемое число. По заданию — больший из корней.

Ответ: 3.

Второй тип

Уравнение может выглядеть как дробь. В таком случае, перед основным решением придется ввести ОДЗ — область допустимых значений, в которой уравнение под дробью нужно будет сделать неравным нулю.

Здесь ОДЗ будет таким: х+2 ≠ 0, то есть х ≠ -2 (число переносится на другую сторону, знак меняется). Если в корнях уравнения попадется число 2, мы его просто исключим.

D = 16 — 4*1*(-12) = 16 + 48 = 64 = 82

Ответ: 6

Задача 10 в ОГЭ по математике

Задачи №10 в математике ОГЭ — это задания на теорию вероятностей. Они также могут быть двух типов — традиционные и усложненные.

Первый тип

Обычные задания на теорию вероятностей состоят из двух-трех объектов (в разном количестве), один из которых гипотетический Вася Пупкин вытягивает. И все, что здесь нужно сделать, — понять, какова вероятность, что он вытащит именно этот объект.

Такие задачи решаются просто — количество вытянутых объектов делится на количество всех объектов. То есть решение этого номера — 34+8+3=315=15=0.2.

Главное в этой задаче — не забыть, что 3 пирожка с яблоками входят в общее число пирожков, то есть делить нужно не на 12, а на 15.

Второй тип

Иногда задание №10 может быть немного сложнее: последовательно вытягивается, например, не один пирожок, а два. Какова вероятность, что оба пирожка будут с яблоком?

В таком случае нужно перемножить обе вероятности — первый пирожок с яблоком ( 15— уже выяснили) и второй пирожок с яблоком (на тарелке осталось 2 яблочных и всего 14 пирожков, потому что один мы уже забрали, то есть вероятность — 214=17). Следовательно, ответ: 1*15*7=135 ≈ 0.03 (округляем до сотых, это обычно сказано в задании).

Задача 17 в ОГЭ по математике

Задание №17 — это номер на поиск площади фигуры. Формулы площади записаны в справочных материалах перед КИМом.

По формуле площади трапеции, ответ к заданию — 7 + 9 + 122*12 = 168.

Задача 18 в ОГЭ по математике

Задачи №18 в математике ОГЭ — это задания на поиск синуса, косинуса или тангенса угла. Это задание можно решить, достроив угол до прямоугольного треугольника.

Удобнее всего построить треугольник, нижняя сторона которого — две клеточки, а боковая — 4 клеточки. Тангенс угла — это отношение противоположного от угла катета (боковой достроенной стороны) к прилежащему (нижней стороне) к противоположному от угла (боковой достроенной стороны). То есть здесь тангенс — 42= 2. Ответ: 2.

Косинус — отношение прилежащего катета (нижней стороны) к гипотенузе, а синус — отношение дальнего (боковой стороны) к гипотенузе.

Таким образом, для решения любого задания достаточно знать программу, уметь использовать справочные материалы и немного логики. И всему этому легко можно научиться!

Решение рациональных уравнений сложного вида в 9-м классе

Разделы: Математика

Цели:

  • Обобщить и углубить знания обучающихся по данной теме;
  • Научить использовать различные методы решения: метод разложения на множители – группировки, метод замены переменной – подстановки для подведения рациональных уравнений сложного вида к более простому;
  • Познакомить с различными видами рациональных уравнений: симметрических, частного случая возвратных уравнений и с методом их решения;
  • Побуждать ребят к взаимоконтролю, самоконтролю и самоанализу при выполнении заданий;
  • Оказывать взаимовыручку, поддержку со стороны одноклассников – ассистентов.
  • Добиваться получения новых знаний через самостоятельное выполнение заданий с последующей взаимопроверкой.

Оборудование: доска раздвижная, листы – задания для устного счета, компьютер, экран.

Время: 90 минут – 2 урока.

1. Проверка домашнего задания (5 минут).

На доске (на обратной стороне) заранее на перемене учащимися записаны решения. Ученики меняются тетрадями друг с другом по парте и после проверки ставят оценки “5” – нет ошибок; “4” – 1 -2 ошибки; “3” – 3-4 ошибки, а более – “ 2”.

2. Устный тест – повторение:

На парте лежат карточки с решениями и ответы к ним, выбрать правильный ответ и объяснить почему?

задания / ответы1234
(х-3) (х+7)=03; 73; -7-3;7-3;-7
х 2 – 6х + 5 = 05;12;3-5;-1-2; -3
х 2 – 25 = 00;51;25-5;5Нет решения
х 2 + 4х + 7 = 03,5; 2Нет решения2+; 2-1; 2,5
3(1-х)+2 = 5 – 3хНет решения3;1Множество корней0;5

Правильные ответы: 1 задание – 2; 2 зад. – 3; 3 зад. – 3; 4 зад. – 2; 5 зад. – 3.

Учитель: Под рациональным уравнением принято понимать уравнение, которое может быть записано в виде: аnx n + an-1x n-1 + … a2x 2 + a1x + a0 =0, где an, an-1, …a0 – заданные числа, а х – неизвестное. Простейшие рациональные уравнения мы решаем с помощью четырех основных методов.

(Метод перехода от равенства, связывающего функции, к равенству, связывающему аргументы; метод замены переменной; метод разложения на множители – группировки; функционально – графический метод).

Мы научились решать рациональные уравнения второй степени, а третьей, четвертой?

А каким методом вы решите уравнение вида a) х 3 – 8 + х – 2 = 0?

Подсказка: желательно подвести к произведению многочленов.

Да, верно, используем метод разложения на множители – группировки. Группируем слагаемые, применим формулы сокращенного умножения и получим произведение нескольких множителей – многочленов в левой части уравнения, а в правой – нуль.

(Вызывается ученик сильный в математике, а если нет, то показывает учитель ход решения).

б) А при таком уравнении х 3 – 3х + 2 = 0 можно использовать метод группировки?

Перепишем уравнение, записав , получим , а теперь сгруппируем (х 3 – х) – (2х -2) = 0. Дальнейшее решение самостоятельно, а один ученик выходит к доске, решает на другой стороне, затем учащиеся сверяют.

Учитель: Вспомним, при решении биквадратных уравнений какой метод мы использовали? Самый распространенный из всех методов – да, метод замены переменной – метод подстановки. Искусство производить замену переменных заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху. На сегодняшнем уроке мы это и рассмотрим.

Разберем решение данного уравнения:

Освободимся от знаменателя, t 2 + 4t + 3 = 0, где t ? 0.

Дорешать самостоятельно, дальнейшее решение проецируется на экран.

По формуле решаем второе уравнение =

= = = = =

Ответ: х1 = -5, х2 = 1, х3 = , х4 = .

Учитель: Рассмотрим уравнение вида

г) (х 2 + 10х ) 2 + (х 2 + 5) 2 = 157.

Метод замены переменной легко увидеть, если воспользоваться формулой квадрата суммы для второй скобки. (х 2 + 10х ) 2 + (х 2 +10х + 25) = 157; (Далее решает ученик у доски, а остальные – самостоятельно).

Пусть тогда получим

х 2 + 10х = 11 или х 2 + 10х = -12. Решая эти уравнения, получим

Ответ: <-11; 1; -5 >. +

Учитель: Рассмотрим уравнение вида

Найдем равенство сумм пар чисел -7 + 2 = -1 – 4,

Перемножим между собой первую и третью, вторую и четвертую скобки, получим (х 2 – 5х – 14) ((х 2 – 5х + 4) – 40.

Введем замену: х 2 – 5х – 14 = t, где t – любое число, получим t(t + 18) = 40, t 2 + 18t – 40 = 0.

(Работает учитель, показывая ход решения или ученик с помощью учителя).

Решим данное уравнение по т. Виета

Решим систему уравнений

Ответ: х1 = 2, х2 = 3, х3 = х4 =

Проверка решения данного уравнения с помощью проекции решения на экране.

+1 + 4 = + 2+ 3. Данное условие равенства выполняется, поэтому раскроем скобки, группируя первый множитель с последним и второй с третьим.

Тогда данное уравнение примет вид: (х 2 + 5х + 4) (х 2 + 5х +6) = 24.

Полагая х 2 + 5х = t, получим квадратное уравнение (t +4)(t +6) = 24,

решая его t 2 + 10t =0, t(t + 10) =0, найдем корни t1 =0, t2= -10.

Затем решаем уравнения

Учитель: Уравнения вида а0х n + a1x n-1 + … + akx k + … + a1x + a0 = 0, где коэффициенты членов, равно от стоящих от концов, равны между собой, называют симметрическими уравнениями.

Симметрические уравнения обладают следующими свойствами:

1. Симметрическое уравнение нечетной степени имеет корень х = -1, в чем можно убедиться непосредственной подстановкой;

2. Уравнение четной степени 2n решаются с помощью подстановки

V = x + сводится к уравнению степени n.

Данное уравнение симметрическое, так как коэффициенты равно отстоящих от концов, равны между собой. Степень уравнения нечетная равная 5, поэтому корень данного уравнения х = – 1.

Пусть Разделим левую часть уравнения на х + 1 и получим симметрическое уравнение четвертой степени:

Разделим обе части уравнения на х 2 : 2х 2 + 3х – 16 + 3• + 2• 1/х 2 = 0, и сгруппируем члены уравнения: 2(х 2 + 1/х 2 ) + 3 (1 + ) – 16 = 0.

Используем метод замены переменной при t = x + , возведем в квадрат обе части уравнения, получим t 2 = (x + ) 2 = x 2 + 2• x • + 1/x 2 , тогда x 2 + 1/x 2 = t 2 – 2, и после преобразований получим квадратное уравнение 2 t 2 + 3t – 20 = 0. Находим корни t = = = t1 = , t2 = -4. Таким образом , исходное уравнение четвертой степени равносильно совокупности уравнений x + и x + = -4.

Решив данные уравнения, получим еще четыре корня исходного уравнения.

Ответ: х1 = -1, х2 = -2+, х3 = -2 – , х4 = 2, х5 = .

Учитель: Прошу вас, ребята, решить самостоятельно с последующей проверкой симметрическое уравнение четвертой степени. А почему оно симметрическое?

з) 2х 4 + 3х 3 – 16 х 2 + 3х + 2 = 0.

Разделим обе части уравнения на х 2 , получим 2х 2 + 3х – 16 + + 2/х 2 =0.

Сгруппируем (2х 2 + 2/х 2 ) + (3х+ ) – 16 = 0, 2(х 2 +12/х 2 ) + 3(х+ ) – 16 =0.

Введем метод замены переменной, обозначим х+ = t, возведем в квадрат обе части равенства, получим t 2 = (x + ) 2 = x 2 + 2• x • + 1/x 2 , тогда x 2 + 1/x 2 = t 2 – 2, и после преобразований получим квадратное уравнение вида 2(t 2 – 2) + 3t – 16 =0. Решая уравнение по общему виду 2t 2 -4 + 3t -16 = 0, 2t 2 + 3t – 20 = 0, получим корни t1 = , t2 = -4. Можно не решать, а сразу же записать ответы предыдущего уравнения.

Ответ: х1 = , х2 = -2+, х3 = -2 – , х4 = 2.

Учитель: Мы рассмотрели симметрические уравнения, являющиеся частным случаем возвратных уравнений. Следовательно, и ход их решения будет похожим, но более подробно мы познакомимся с возвратными уравнениями и рассмотрим более подробно ход решения на следующем занятии. А сейчас,

я вам предложу домашнее задание на два варианта для самостоятельного решения. Дополнительно даны ответы ко всем уравнениям. Не сможете справиться, рассмотрим на уроке. а кто-то хочет больше решить, с довольствием приветствую вас.

Вариант 1.Вариант 2.
а) (х 2 – 6х) 2 -2(х – 3) 2 = 81;
б) х 3 + х + 2 = 0;
в) 6х 4 – 35 х 3 + 62 х 2 – 35х + 6 = 0;
г) (х –1)(х+2)(х-3)(х+4) = 144;
д) (х 2 + х + 1)(х 2 + х + 2) = 12;
а) (х 2 – 8х) 2 + 3(х – 4) 2 = 76;
б) х 3 + 3х 2 + 2х = 0.
в) 5х 4 – 12х 3 + 14х 2 – 12х + 5 = 0.
г) (х-1)(х-2)(х-3)(х-4) = 15.
д) (3х +2) 4 – 13(3х + 2) 2 + 36 = 0.

Выберите ответы, выполняя домашнее задание.

А В. 1.С < -2; -1; 0>.Д < -2; 1>.Б<0; 1>.

Учитель: Подведем итог нашей темы. Уравнения третьей и четвертой степени решались в общем случае методом замены переменной, в который заключается в том, что для решения уравнения вида f(x) =0 вводят переменную t = g(x) и выражают f(x)через t, получая новое уравнение w(t) = 0. Решая затем уравнение w(t)= 0, находят его корни1, t2, … tn>. После чего получают совокупность n – уравнений g(x) = t1, g(x) = t2, … g(x) = tn, из которых находят корни исходного уравнения.

Олимпиадные задания с решениями по математике (9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Школьный этап олимпиады по математике

для учащихся 9 класса

1.Докажите, что значение выражения + есть число рациональное.

2.На пост мера города претендовало три кандидата: Андреев, Борисов, Васильев. Во время выборов за Васильева было отдано в 1,5 раза больше голосов, чем за Андреева, а за Борисова – в 4 раза больше, чем за Андреева и Васильева вместе. Сколько процентов избирателей проголосовало за победителя? (4балла)

3.В прямоугольном треугольнике с катетами 3 и 4 см проведены высота прямого угла и медиана большего из острых углов. В каком отношении высота делит медиану? (5 баллов)

4.В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съедает трех щук (сытых или голодных). Каково наибольшее количество щук в этом пруду, которые могли бы почувствовать себя сытыми за достаточно большой промежуток времени? (щука может быть в некоторый момент сытой, но потом голодной). (6 баллов)

5.Пусть х и у – такие целые числа, что 3х + 7у делится на 19. Докажите, что
43х + 75у тоже делится на 19. (6 баллов)

1.Докажите, что значение выражения + есть число рациональное.

Решение : + = = — .

2.На пост мера города претендовало три кандидата: Андреев, Борисов, Васильев. Во время выборов за Васильева было отдано в 1,5 раза больше голосов, чем за Андреева, а за Борисова – в 4 раза больше, чем за Андреева и Васильева вместе. Сколько процентов избирателей проголосовало за победителя?

Решение : за Андреева было отдано х голосов; за Васильева было отдано 1,5х голосов; за Борисова было отдано 4 2,5х =10х голосов. Победитель – Борисов. Всего проголосовало х+1,5х +10х =12,5х человек. 12,5х – 100%; 10х – а% ; а =

3.В прямоугольном треугольнике с катетами 3 и 4 см проведены высота прямого угла и медиана большего из острых углов. В каком отношении высота делит медиану?
Ответ: 9:8, считая от основания.
Решение. Проведем отрезок DF, параллельный высоте АЕ. По теореме Фалеса, он разделит отрезок BE пополам. По теореме Пифагора, гипотенуза треугольникаАВС равна 5 см. Кроме этого , и . Отсюда: . Отсюда . То есть ВЕ=3,2, FE=1,6, EC=1,8. Из параллельности отрезков DF и GE следует, что .
4. В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съедает трех щук (сытых или голодных). Каково наибольшее количество щук в этом пруду, которые могли бы почувствовать себя сытыми за достаточно большой промежуток времени?( щука может быть в некоторый момент сытой, но потом съеденной)
Ответ. 9 щук.
Решение. 10 сытых щук быть не может, так как каждая из них съест хотя бы по три щуки и еще последняя останется живой. То есть щук было хотя бы 31. Пример на 9 щук строится просто: первая съела три других, следующая съела ее и две других, и т. д.

5. Пусть х и у – такие целые числа, что 3х+7у делится на 19. Докажите, что 43х+75y тоже делится на 19.
Доказательство. Попробуем представить Отсюда:

Отсюда ,

1. Докажите, что , если .

Доказательство. Первое решение. Если , то условие имеет вид , что не верно. Следовательно, если и требуемое неравенство выполняется. Пусть . Рассмотрим квадратичную функцию . Поскольку , и, по условию, , то в точках +1 и -1 функция принимает значения разного знака и отлична от нуля. Это означает, что квадратичная функция имеет два корня, необходимым и достаточным условием которого является положительность дискриминанта, то есть , откуда и следует требуемое неравенство.

Второе решение . Из условия имеем

. Или . Согласно неравенству о среднем арифметическом и среднем геометрическом , откуда .

2. В десятичной записи некоторого натурального числа переставили цифры и получили число в три раза меньшее. Доказать, что исходное число делится на 27.

Доказательство. Пусть a – исходное число, а число b получено из a после перестановки некоторых цифр. По условию , то есть число a делится на 3. Так как сумма цифр у чисел a и b одинакова, то, по признаку делимости на 3, число b тоже делится на 3. Далее, раз число b делится на 3, а число a = 3 b , то a делится на 9. Теперь согласно признаку делимости на 9, число b тоже делится на 9, а значит, число a делится на 27.

Примечание. Доказано, что число a делится на 9, – 3 балла.

3. В окружность радиуса 1 вписан правильный 2012-угольник. Найти сумму квадратов расстояний от произвольной точки окружности до всех вершин этого многоугольника.

Решение. Так как число вершин правильного 2012-угольника четно, то они разбиваются на 1006 пар диаметрально противоположных вершин. Пусть AB некоторый диаметр, а M – произвольная точка окружности. Если M совпадает с одной из вершин A или B , то . Если точка M отлична и от A и от B , то треугольник MAB прямоугольный (угол AMB – вписанный и опирается на диаметр) с гипотенузой AB = 2. Тогда, по теореме Пифагора, . Следовательно, независимо от выбора точки M , сумма квадратов расстояний от нее до вершин каждой пары диаметрально противоположных вершин постоянна и равна 4. Следовательно, сумма квадратов расстояний от точки M до вершин правильного 2012-угольника будет равна .

Примечание. Если не рассмотрен случай совпадения точки с вершиной многоугольника – минус 1 балл.

4. Сумма первых n членов арифметической прогрессии равна сумме первых m членов той же прогрессии. Определите сумму первых членов этой же прогрессии.

Решение. Обозначим через — первый член прогрессии, а d – разность прогрессии. По условию задачи , то есть справедливо равенство , из которого, учитывая, что , получаем . Подставляя полученное выражение для в формулу суммы первых членов той же прогрессии, получим .

Примечание. Верный ответ без обоснования – 1 балл.

5. В шахматном однокруговом турнире, где каждый участник играет с каждым другим один раз, участвовало два девятиклассника и некоторое число десятиклассников. Два девятиклассника вместе набрали 8 очков, а каждый десятиклассник набрал одно и то же число очков. Сколько десятиклассников участвовало в турнире? (За победу в шахматной партии дается одно очко, за ничью – пол очка, за поражение – ноль очков).

Решение . Пусть в турнире участвовало n десятиклассников. Так как в каждой партии всего разыгрывается одно очко, то девятиклассники в игре между собой вместе набрали 1 очко, и, следовательно, 7 очков набрали в играх с десятиклассниками. Тогда все десятиклассники суммарно набрали очков в играх между собой и 2 n 7 очков в играх с двумя девятиклассниками. По условию, все десятиклассники набрали одинаковое число очков, то есть, число кратно n . Последнее означает, что число целое. Если n нечетно, то ( n 1) – четно, и, следовательно, n делит 7, то есть n = 1 или n = 7. Значение n = 1 не подходит, так как общее число набранных очков десятиклассниками будет отрицательно. Пусть n четно, то есть n = 2к. Тогда = . Следовательно, целое, а значит , откуда k = 1 или k = 7. Действительно, при k > 7 , а значения k проверяются непосредственно. Значение k = 1 не подходит по тем же причинам, что и в первом случае. Таким образом, для n имеем два значения: 7 и 14. Проверкой легко убедиться, что оба значения подходят.

Примечание. Получен один ответ – 5 баллов.

5.Треугольник АВС, сумма частей окружности = 2+5+17=24

1 часть = 360/24 = 15, дуга АВ = 2 х 15 =30, дуга ВС = 5 х 15 = 75. дуга АС=17 х 15 =255

угол С =1/2 дуги АВ =30/2=15, угол А=1/2дугиВС = 75/2=37,5, угол В=1/2 дуги АС= 255/2= 127,5

АВ = R x 2 x sin15 = 0,5176R

BC = R x 2 x sin37,5 =1,2176R

AC = R x 2 x sin 127,5 =1,5866 R

Площадь = 1/2АС х ВС х sin15 = 1/2 х 1,5866R x 1,2176R x 0,2588 = 0,25R в квадрате

1. Так как , то графиком функции будет синусоида с выколотыми точками .

2. Воспользуемся формулами для синуса двойного угла:

,тогда получим уравнение Далее используем формулу синуса суммы для sin 12 x = sin (8 x +4 x ) и получаем, что sin 8 x cos 4 x =0, откуда sin 8 x =0 или cos 4 x =0. Решением совокупности этих уравнений будет . В итоге получим .

3. Выделим полный квадрат: . Но первое слагаемое при любых значениях х неотрицательно, а второе слагаемое строго больше нуля, поскольку дискриминант отрицательный, следовательно, данное выражение всегда положительно. Значит, данное неравенство решений не имеет.

4. Сложив все три уравнения системы, получим уравнение (2 x +2 y +2 z )( x + y + z )=288,из которого найдем х+ y + z =-12. Получим в первом случае х=2, y =4, z =6; а во втором случае х=-2, y =-4, z =-6.

5.Треугольник АВС, сумма частей окружности = 2+5+17=24

1 часть = 360/24 = 15, дуга АВ = 2 х 15 =30, дуга ВС = 5 х 15 = 75. дуга АС=17 х 15 =255

угол С =1/2 дуги АВ =30/2=15, угол А=1/2 дугиВС = 75/2=37,5, угол В=1/2 дуги АС= 255/2= 127,5

АВ = R x 2 x sin15 = 0,5176R

BC = R x 2 x sin37,5 =1,2176R

AC = R x 2 x sin127,5 =1,5866R

Площадь = 1/2АС х ВС х sin15 = 1/2 х 1,5866R x 1,2176R x 0,2588 = 0,25R в квадрате


источники:

http://urok.1sept.ru/articles/639386

http://infourok.ru/olimpiadnye-zadaniya-s-resheniyami-po-matematike-9-klass-5771603.html