Самостоятельная логарифмические уравнения и системы

Методическое пособие по теме «Логарифмическая функция. Решение логарифмических уравнений, неравенств и систем логарифмических неравенств»

Разделы: Математика

Логарифмические уравнения, неравенства и системы логарифмических неравенств входят в число задач, предлагаемых на едином государственном экзамене по математике. Пособие может быть использовано для подготовки к единому государственному экзамену, а также для более глубокого изучения темы “Логарифмическая функция. Решение логарифмических уравнений, неравенств и систем логарифмических неравенств”.

В данном пособии представлены самостоятельные работы для отработки и закрепления навыков решения логарифмических уравнений, неравенств и систем логарифмических неравенств.

Самостоятельные работы рассчитаны на учащихся физико-математических классов, однако, могут быть использованы и для хорошо успевающих учащихся общеобразовательных учреждений. За каждую из проведенных работ выставляется оценка, что послужит достаточной мотивацией для наиболее полной и качественной домашней проработки пройденного накануне материала.

В приложении 1 приведена самостоятельная работа, в которой учащимся предлагается решить логарифмические уравнения, используя при этом определение логарифма, основное логарифмическое тождество и другие преобразования логарифмов. В процессе решения необходимо провести проверку полученных ответов на соответствие с ограничениями, предусмотренными при использовании логарифмической функции. Кроме того, одно из логарифмических уравнений в процессе решения потребует тригонометрических преобразований, а также проверку найденных корней на соответствие с ограничениями, введенными в связи с использованием логарифма, т.е. учащимся придется решать тригонометрическое неравенство и отбирать нужные корни в соответствии с полученным ограничением. Задания 3 и 4 являются наиболее сложными в работе и рассчитаны на более высокий уровень подготовки учащихся. Эту работу полезно использовать и в средней общеобразовательной школе для лучшего запоминания и усвоения основных понятий по данной теме, исключив из нее задания 3 и 4.

В приложении 2 содержится самостоятельная работа на решение логарифмических неравенств. В работу включены различные типы логарифмических неравенств. При этом задания 1, 2 и 3 целесообразно давать учащимся общеобразовательной школы. Для решения неравенства 4 от учащихся потребуются навыки работы с неравенствами, содержащими модуль. Неравенства 4, 5 и 6 предназначены для учащихся физико-математических классов.

В приложении 3 приведены три системы неравенств, каждая из которых содержит логарифмическое неравенство с переменной в основании, а также показательное неравенство, сводящееся к квадратному с помощью замены переменной, либо решаемое при помощи обобщенного метода интервалов. Эта самостоятельная работа рассчитана на учащихся с достаточно высоким уровнем математической подготовки и рекомендуется для проведения в классах с углубленным изучением математики.

Самостоятельные работы составлены в четырех вариантах эквивалентной сложности, которые удобно использовать для промежуточного контроля знаний учащихся, отработки практических навыков решения задач по теме “Логарифмическая функция”.

Представленные в пособии работы позволяют учащимся лучше усвоить пройденный материал по указанной теме, что подтверждено практикой.

Самостоятельные работы содержат ответы, что позволит значительно сократить время проверки работ преподавателем.

Данное пособие также может быть использовано для организации повторения при подготовке учащихся старших классов к успешной сдаче единого государственного экзамена по математике.

  • Цыпкин А.Г., Пинский А.И. Справочное пособие по математике с методами решения задач для поступающих в ВУЗы – М.: “Издательство Оникс”, 2007.
  • Сергеев И.Н., Панферов В.С. ЕГЭ 2013. Математика. Задача С3. Уравнения и неравенства – Москва: “Издательство МЦНМО”, 2013.
  • Колесникова С.И. Показательные и логарифмические уравнения. ЕГЭ. Математика. – Москва: ООО “Азбука – 2000”, 2012.
  • Колесникова С.И. Показательные и логарифмические неравенства. ЕГЭ. Математика. – Москва: ООО “Азбука – 2000”, 2013.
  • Ященко И. В., Шестаков С.А., Трепалин А. С., Захаров П. И. Подготовка к ЕГЭ по математике. Новая демонстрационная версия 2014.- Москва: “Издательство МЦНМО”, 2014.
  • Алгебра

    План урока:

    Задание. Укажите корень логарифмического уравнения

    Задание. Решите урав-ние

    В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

    Задание. Найдите решение логарифмического уравнения

    Задание. Решите урав-ние

    Задание. Решите урав-ние

    Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

    Уравнения вида logaf(x) = logag(x)

    Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

    Задание. Решите урав-ние

    Задание. Найдите корень урав-ния

    Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

    С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

    Задание. Решите урав-ние

    Получили квадратное уравнение, которое решаем с помощью дискриминанта:

    Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

    Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

    Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

    Уравнения, требующие предварительных преобразований

    Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

    Задание. Решите урав-ние

    с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

    Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

    Задание. Решите урав-ние

    Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

    Задание. Решите урав-ние

    Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

    Задание. Решите урав-ние

    Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

    Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

    Задание. Решите урав-ние

    Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

    Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

    Логарифмические уравнения с заменой переменных

    Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

    Задание. Решите уравнение методом замены переменной

    Задание. Найдите решение уравнения методом замены переменной

    Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

    Логарифмирование уравнений

    Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

    Задание. Укажите корни урав-ния

    Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

    Возвращаемся от переменной t к переменной х:

    Переход от логарифмических неравенств к нелогарифмическим

    Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

    Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

    Задание. Найдите решение логарифмического неравенства

    Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

    Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

    Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

    Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).


    источники:

    http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie