Самостоятельная работа при решении уравнений

Самостоятельные работы по теме: «Уравнения» 5-11 классы
методическая разработка по алгебре (5, 6, 7, 8, 9, 10, 11 класс) по теме

Методические материалы для проведения самостоятельных работ по теме уравнения в 5-11 классах

Скачать:

ВложениеРазмер
samostoyatelnye_raboty.doc0 байтов
Методические материалы для проведения самостоятельной работы по теме»Уравнения» в 5-11 классах208 КБ

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Предварительный просмотр:

Проверочные работы по теме: “Уравнения”

1 вариант 2 вариант

8х + 2х + 3х = 130

17х – 7х + 40 = 170

15х – 5х + 20 = 180

6х + 5х + 4х = 150

5х + х – 2х + 40 = 240

8х + х – 4х – 40 = 160

40 · х · 25 = 100 000

4 · х · 250 = 10 000

18 · (15 – х ) = 216

1 вариант 2 вариант

4х + 3х + 20 = 100

80 – ( 20 + у ) = 50

70 + ( 60 – у ) = 130

1 вариант 2 вариант

( 2у – 5) – (3у – 7) = 4

(2 + 3х) — (4х — 7) = 10

( 3 – х )( х + 4 ) + х 2 = 0

( 4 – х )( х + 5 ) + х 2 = 0

( х — 1)( х + 1) – х ( х – 2 ) = 0

( х + 2 )( х — 2 ) – х ( х — 3) = 0

16х 2 – ( 4х – 1 ) 2 = 0

( 3х + 2 ) 2 – 9х 2 = 10

х 3 +3х 2 – х – 3 = 0

х 3 + х 2 – 4х – 4 = 0

1 вариант 2 вариант

х 4 – 2 х 2 – 24 = 0

х 4 + 2 х 2 – 15 = 0

(х 2 + 9)(х 2 – 5) = 0

(х 2 + 4)(х 2 — 7) = 0

9 КЛАСС (обычный класс)

1 вариант 2 вариант

2 – 3( х + 2 ) = 5 – 2х

3 – 5( х + 1 ) = 6 – 4х

х 4 – 2 х 2 – 8 = 0

х 4 – 8 х 2 – 9 = 0

(х 2 – 3х) 2 — 2(х 2 – 3х) = 8

(х 2 + х) 2 – 11(х 2 +х) = 12

9 КЛАСС (для сильного класса)

1 – 6 . РЕШИТЕ УРАВНЕНИЯ:

1 вариант 2 вариант

2 – 3( х + 2 ) = 5 – 2х

3 – 5( х + 1 ) = 6 – 4х

Сколько корней имеет данное уравнение:

Найдите сумму корней уравнения:

х 4 – 2 х 2 – 8 = 0

х 4 – 8 х 2 – 9 = 0

Найдите произведение корней данного уравнения:

(х 2 – 3х) 2 — 2(х 2 –3х) = 8

(х 2 + х) 2 – 11(х 2 +х) = 12

При каких значениях с уравнение:

не имеет корней?

1 вариант 2 вариант

2 3х+2 – 2 3х — 2 = 30

3 2х-1 + 3 2х = 108

9 х — 4·3 х + 3 = 0

16 х — 17·4 х + 16 = 0

lg (4х – 2) = 5 lg 2 – 3

lg (х + 3) = 3 + 2 lg 5

1 вариант 2 вариант

128 · 16 2x + 1 = 8 3 – 2x

243 · ( ) 3 x – 2 = 27 x + 3

log 2 (2x + 1) = log 2 3 + 1

log 3 (4 – 2x) = log 3 2 + 2

sinx + sin( + x) – cos( )= 1

cosx – sin( ) + cos( + x)= 0

сos 2x — 7 cosx + 4 = 0

2 сos 2x — 4 cosx = 1

3 · 25 x — 8 · 15 x + 5 · 9 x = 0

4 · 9 x — 13 · 6 x + 9 · 4 x = 0

Х 1 + lg x = 10 x

Критерии оценок для всех классов, кроме 9 сильного:

“ 5 ” – верно решено 9 — 10 уравнений

“ 4 ” – верно решено 7 – 8 уравнений

“ 3 ” – верно решено 5 – 6 уравнений

“ 2 ” – решено менее 5 уравнений

Критерии оценок для 9 класса (сильного) :

“ 5 ” – верно решено 10 — 11 уравнений

“ 4 ” – верно решено 8 – 9 уравнений

“ 3 ” – верно решено 6 – 7 уравнений

“ 2 ” – решено менее 6 уравнений

По теме: методические разработки, презентации и конспекты

Самостоятельная работа по алгебре 9 класс»График квадратичной функции»

Работа состоит из двух вариантов. Содержит разнообразные задания и вопросы по теме «Постороение графика квадратичной функции», для ответов на которые требуется глубокое понимание материала. Количество.

самостоятельная работа по алгебре 9 класс по теме «Квадратичные неравенства»

Данная самостоятельная работа охватывает сразу несколько вопросов по теме «Квадратичные неравенства» и «Квадратный трехчлен», поэтому может быть использована на уроках итогового контроля. Задания пред.

Самостоятельные работы по математике, 5 класс.УМК Мордкович А.Г.

Дидактический материал. Самостоятельные работы по математике по теме » Углы», » Треугольники».

Самостоятельная работа по природоведению 5 класс по теме: «Суша»

Самостоятельная работа по природоведению 5 класс по теме: Суша. Проверочная работа включает задания для проверки знаний по теме.

Самостоятельная работа «Волновая оптика» 11 класс.

Самостоятельная работа в 6 вариантах.

Самостоятельная работа для учащихся второго класса (негимназических классов)Учебник «Enjoy English-2» Биболетова М.З.

В данной работе содержится материал, направленный на:1) разницу употребления форм has got/ have got2) глагол to be (am, is, are)3) лексику по пройденным урокам: прилагательные, животные, цвета.4) повт.

Контрольные работы, самостоятельные работы, тесты для 6 класса

Контрольные работы, самостоятельные работы, тесты.

Самостоятельная работа: «Решение уравнений».

Самостоятельная работа: «Решение уравнений». 2 варианта.

Просмотр содержимого документа
«Самостоятельная работа: «Решение уравнений».»

Самостоятельная работа по теме «Решение уравнений».

Решите уравнения: а) 3х = 15; д) 2(2 + у) = 19 – 3у;

б) 4х – 2 = 2х + 6; е) −3(3b + 1) – 12 = 12;

в) 11 + 5х = 55 + 3х; ж) −2(2 – 5х) = 2(х – 3) – 5;

г) − 8х – 17 = 3х – 105.

3. Решите уравнение, используя основное свойство пропорции:

Решите уравнения: а) 4х = 16; д) 2(у + 3) = 21 – 3у;

б) − 15 – 3х = −7х + 45; е) − 3(1 – 3d) − 12 = 12;

в) 11 + 3х = 55 + х; ж) − 5(2 – 2х) = 2(х – 3) + 4;

г) − 3х – 17 = 8х – 105.

3. Решите уравнение, используя основное свойство пропорции:

Самостоятельная работа по теме «Решение уравнений».

Решите уравнения: а) 3х = 15; д) 2(2 + у) = 19 – 3у;

б) 4х – 2 = 2х + 6; е) −3(3b + 1) – 12 = 12;

в) 11 + 5х = 55 + 3х; ж) −2(2 – 5х) = 2(х – 3) – 5;

г) − 8х – 17 = 3х – 105.

3. Решите уравнение, используя основное свойство пропорции:

Решите уравнения: а) 4х = 16; д) 2(у + 3) = 21 – 3у;

б) − 15 – 3х = −7х + 45; е) − 3(1 – 3d) − 12 = 12;

в) 11 + 3х = 55 + х; ж) − 5(2 – 2х) = 2(х – 3) + 4;

г) − 3х – 17 = 8х – 105.

3. Решите уравнение, используя основное свойство пропорции:

Самостоятельная работа по теме «Решение уравнений».

Решите уравнения: а) 3х = 15; д) 2(2 + у) = 19 – 3у;

б) 4х – 2 = 2х + 6; е) −3(3b + 1) – 12 = 12;

в) 11 + 5х = 55 + 3х; ж) −2(2 – 5х) = 2(х – 3) – 5;

г) − 8х – 17 = 3х – 105.

3. Решите уравнение, используя основное свойство пропорции:

Решите уравнения: а) 4х = 16; д) 2(у + 3) = 21 – 3у;

б) − 15 – 3х = −7х + 45; е) − 3(1 – 3d) − 12 = 12;

в) 11 + 3х = 55 + х; ж) − 5(2 – 2х) = 2(х – 3) + 4;

г) − 3х – 17 = 8х – 105.

3. Решите уравнение, используя основное свойство пропорции:

Самостоятельная работа по теме «Решение уравнений».

Решите уравнения: а) 5х = 15; д) 5(2 + у) = 4 – 3у;

б) 6х – 2 = 2х + 6; е) −2(3b + 1) – 14 = 8;

в) 11 + 7х = 55 + 3х; ж) −3(2 – 5х) = 6(х + 3) – 6;

г) − 8х + 17 = 3х + 83.

3. Решите уравнение, используя основное свойство пропорции:

Решите уравнения: а) 7х = 14; д) 6(у + 2) = 21 – 3у;

б) − 12 – 2х = −7х + 48; е) − 5(1 – 3d) + 11 = 12;

в) 1 + 3х = 43 + х; ж) −6(2 – 2х) = 2(х – 3) + 3;

г) − 2х – 27 = 9х – 115.

3. . Решите уравнение, используя основное свойство пропорции:

Самостоятельная работа по теме «Решение уравнений».

Решите уравнения: а) 5х = 15; д) 5(2 + у) = 4 – 3у;

б) 6х – 2 = 2х + 6; е) −2(3b + 1) – 14 = 8;

в) 11 + 7х = 55 + 3х; ж) −3(2 – 5х) = 6(х + 3) – 6;

г) − 8х + 17 = 3х + 83.

3. Решите уравнение, используя основное свойство пропорции:

Решите уравнения: а) 7х = 14; д) 6(у + 2) = 21 – 3у;

б) − 12 – 2х = −7х + 48; е) − 5(1 – 3d) + 11 = 12;

в) 1 + 3х = 43 + х; ж) −6(2 – 2х) = 2(х – 3) + 3;

г) − 2х – 27 = 9х – 115.

3. . Решите уравнение, используя основное свойство пропорции:

Самостоятельная работа по теме «Решение уравнений».

Решите уравнения: а) 5х = 15; д) 5(2 + у) = 4 – 3у;

б) 6х – 2 = 2х + 6; е) −2(3b + 1) – 14 = 8;

в) 11 + 7х = 55 + 3х; ж) −3(2 – 5х) = 6(х + 3) – 6;

г) − 8х + 17 = 3х + 83.

3. Решите уравнение, используя основное свойство пропорции:

Решите уравнения: а) 7х = 14; д) 6(у + 2) = 21 – 3у;

б) − 12 – 2х = −7х + 48; е) − 5(1 – 3d) + 11 = 12;

в) 1 + 3х = 43 + х; ж) −6(2 – 2х) = 2(х – 3) + 3;

г) − 2х – 27 = 9х – 115.

3. . Решите уравнение, используя основное свойство пропорции:

Статья на тему: Самостоятельная работа как средство обучения решению уравнений в 5 — 9 классах

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Самостоятельная работа как средство обучения решению уравнений в 5 — 9 классах

Выполнила: заместитель директора,

Хасавюрт, 2016 г.

Теоретические аспекты обучению уравнений в 5 — 9 классах с использованием самостоятельной работы.

Из истории возникновения уравнений.

Содержание и роль линий уравнений в современном школьном курсе математики.

Основные понятия линий уравнения.

Обобщенные приемы решения уравнений с одной переменной в школьном курсе алгебры.

Методика изучения основных классов уравнений и их систем.

Методико — педагогические основы использования самостоятельной работы, как средство обучения решению уравнений.

Организация самостоятельной работы при обучении решению уравнений.

Введение

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений.

Проблема методики формирования умений самостоятельной работы является актуальной для учителей всех школьных предметов, в том числе и для учителей математики. Ее решение важно еще и с той точки зрения, что для успешного овладения современным содержанием школьного математического образования необходимо повысить эффективность процесса обучения в направлении активизации самостоятельной деятельности учащихся. Для этого требуется четко определить систему умений и навыков, овладение которыми приводит к самостоятельному выполнению работ различного характера. Важным также является раскрытие процесса формирования умений и навыков самостоятельной работы при обучении курсам математики, при этом необходимо показать, как в ходе преподавания математики учитель может осуществить формирование у учащихся отмеченных выше умений и навыков.

Поэтому я решила работать над данной темой дипломной работы: «Самостоятельная деятельность, как средство обучения решению уравнений в 5-9 классах.

Я хочу в своей работе рассмотреть вопросы связанные с изучением уравнений в курсе математики и как при помощи схемной работы улучшить качество усвоения материала дипломной темы.

Поэтому при работе над дипломной работы я перед собой поставила следующие цели и задачи.

Изучить психолого — педагогическую и методическую литературу, Касающуюся изучению уравнений. Проанализировать школьные учебники и выделить в них место уравнений.

Составить конспекты уроков обучения решения различных видов уравнений с использованием самостоятельной работы.

Разработать самостоятельных работ для учащихся по различным темам уравнений.

Провести наблюдения за использованием класса в процессе самостоятельной работы.

Глава I . Теоретические аспекты обучению уравнений в 5 — 9 классах с использованием работы

§ Из истории возникновения уравнений.

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени 1 еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Как составлял и решал Диофант квадратные уравнения

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е.. 10 — х. Разность между ними 2х. Отсюда уравнение

Отсюда х == 2. Одно из искомых чисел равно 12, другое 8. Решение х = — 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

Ясно, что, выбирая в качестве н t известного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax 2 + b х = с, а> 0. (1)

В уравнении (1) коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Соответствующее задаче 13 уравнение

Бхаскара пишет под видом

x 2 — 64 x = — 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

x 2 — б4х + 32 2 = -768 + 1024,

Квадратные уравнения у ал-Хорезми

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

«Квадраты равны числу», т. е. ах 2 = с.

«Корни равны числу», т. е. ах = с.

«Квадраты и числа равны корням», т. е. ах 2 + с = b х.

«Квадраты и корни равны числу», т. е. ах 2 + b х =с.

«Корни и числа равны квадратам», т. е. b х + с == ах 2 .

Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

§ 2. Содержание и роль линии уравнений в современном школьном курсе математики

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий.

Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования:

уравнение как средство решения текстовых задач;

уравнение как особого рода формула, служащая в алгебре объектом изучения;

уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.

Каждое кз этих представлений оказалось в том или ином отношении полезным.

Таким образом, уравнение как общематематическое понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно — методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики.

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений

в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики . Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями х k = b ( k натуральное число, большее 1) и a x =b .

Связь линии уравнений с числовой линией двусторонняя. Приведенный пример показывает влияние уравнений на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений. Например, введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х 2 = b , где b— неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом.

Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

С функциональной линией непосредственно связан также и небольшой круг вопросов школьного курса математики, относящихся к дифференциальным и функциональным уравнениям. Сама возможность возникновения дифференциального уравнения кроется в наличии операции дифференцирования (может быть поставлен вопрос о нахождении для заданной функции другой функции F , такой, что F ( x )= f (х)).

Однако сама по себе возможность выделения дифференциальных уравнений в школьном курсе математики еще не следует из того факта, что имеются формальные основания для их рассмотрения. Как известно, теория дифференциальных уравнений обладает большой сложностью. В школьном обучении эта теория представлена лишь своими начальными частями, которые не образуют связного целого, а относятся к различным конкретным, по большей части прикладным вопросам.

По-видимому, понятие дифференциального уравнения допускает более широкое представление в школьном курсе. В настоящее время этот вопрос является открытой методической проблемой.

В отличие от дифференциальных функциональные уравнения (неизвестным в которых, так же как и в дифференциальных, является функция) почти не представлены в школьном курсе математики. Единичные задания, связанные с этим классом уравнений, могут быть использованы при рассмотрении показательной функции, в связи с понятием обратной функции и др.

В качестве последнего примера отметим взаимосвязь линии уравнений с алгоритмической линией. Влияние же алгоритмической линии на линию уравнений заключается прежде всего в возможности использования ее понятий для описания алгоритмов решения уравнений и систем различных классов.

§ 3. Основные понятия линии уравнений

О трактовке понятия уравнения.

Понятие уравнения относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое с формальной точки зрения, и доступное для учащихся, приступающих к овладению школьным курсом алгебры.

Логико-математическое определение уравнения можно привести в такой форме: пусть на множестве М зафиксирован набор алгебраических операций, х — переменная на М; тогда уравнением на множестве М относительно х называется предикат вида а(х)= b (х), где а(х) и b (х)— термы относительно заданных операций, в запись которых входит символ х. Аналогично определяется уравнение от двух переменных и т. д.

Принятым в логике терминам «терм» и «предикат» соответствуют термины школьной математики «выражение» и «предложение с переменной». Поэтому наиболее близко к приведенному формальному определению следующее определение: «Предложение с переменной, имеющее вид равенства между двумя выражениями с этой переменной, называется уравнением»

Анализируя приведенное математическое определение уравнения, можно выделить в нем два компонента. Первый состоит в том, что уравнение — это особого рода предикат. Второй уточняет, какого именно рода: это равенство, соединяющее два терма, причем термы также имеют определенный специальный вид. При изучении материала, относящегося к линии уравнений и неравенств, оба компонента играют значительную роль.

Первый — смысловой компонент, важен прежде всего для уяснения понятия корня уравнения. Кроме того, смысловой компонент почти всегда используется при обоснован b и корректности того или иного преобразования уравнения.

Второй компонент относится к формальным особенностям записи, изображающей уравнение. Назовем этот компонент знаковым. Он важен в случаях, когда запись уравнения подвергается различным преобразованиям: зачастую такие преобразования производятся чисто механически, без обращения к их смыслу.

Возможность использования в школьном обучении подхода к понятию уравнения, включающего явно упоминание о предложении с переменной, зависит от присутствия этого термина и терминов «истина», «ложь» в обязательном материале курса математики. Если их нет, то привести подобное определение невозможно. В этом случае смысловой компонент понятия уравнения переходит в определение другого понятия, тесно связанного с понятием уравнения,— корня уравнения. Получается система из двух терминов: термин «уравнение» несет в себе признаки знакового компонента, а термин «корень уравнения» учитывает смысловой компонент. Такое определение приведено, например, в учебнике Колмогорова А. Н. «Алгебра и начала анализа»[с. 330]: «Равенство с переменной называется уравнением. Значение переменной, при котором равенство с переменной обращается в верное числовое равенство, называется корнем уравнения»..

Часто, особенно в начале систематического курса алгебры, понятие уравнения вводится посредством выделения его из алгебраического метода решения задач. В этом случае независимо от того, каков текст определения, существенным оказывается подход к понятию уравнения, при котором оно представляет косвенную форму задания некоторого неизвестного числа, имеющего в соответствии с сюжетом задачи конкретную интерпретацию. Например, понятие уравнения вводится на материале текстовой задачи: «Конверт с новогодней открыткой стоит 17 к. Конверт дешевле открытки на 5 к. Найти стоимость открытки». Переход к определению уравнения осуществляется на основе анализа некоторых формальных особенностей записи .х+(х-—5)= 17, выражающей содержание данной задачи в алгебраической форме. С помощью этого же сюжета вводится и понятие корня уравнения. Вот эти определения: «Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Корнем уравнения называется то значение неизвестного, при котором это уравнение обращается в верное равенство». Указанный способ введения понятия уравнения соответствует еще одному компоненту понятия уравнения — прикладному.

Помимо выделенных компонентов понятия уравнения (смыслового, знакового, прикладного), в школьной математике большую роль играет компонент, при котором уравнение трактуется как равенство двух функций. Его роль проявляется в изучении графического метода решения уравнений. Однако в известных нам учебниках алгебры этот компонент не кладется в основу определения уравнения.

Еще один подход к определению понятия уравнения получается при сопоставлении области определения уравнения и множества его корней. Обычно множество корней уравнения — собственное подмножество его области определения. С другой стороны, при решении уравнений приходится использовать преобразования, которые опираются на тождества, т. е. на равенства, истинные на всей области определения. Выделенное здесь противопоставление тождества и уравнения может быть положено в основу определения уравнения: «Буквенное равенство, которое не обязательно превращается в верное численное равенство при допустимых наборах букв, называется уравнением»

Формирование понятия уравнения требует использования еще одного термина: «решить уравнение». Различные варианты его определения отличаются друг от друга, по существу, только наличием или отсутствием в них термина «множество».

Таким образом, при освоении понятия уравнения необходимо использовать термины «уравнение», «корень уравнения», «что значит решить уравнение». При этом наряду с компонентами понятия уравнения, входящими в текст определения, надо включать и все другие его компоненты по мере развертывания материала данной линии.

В определении понятия уравнения используется один из двух терминов: «переменная» или «неизвестное». Различие между ними состоит в том, что переменная пробегает ряд значений, не выделяя ни одного из них специально, а неизвестное представляет собой буквенное обозначение конкретного числа (поэтому этим термином удобно пользоваться при составлении уравнений по текстовым задачам). Вопросы, связанные с выбором одного их этих терминов для использования в школьной практике, в настоящее время еще нельзя считать окончательно решенными. Выбор того или иного из них влечет определенные различия в развертывании содержания линии уравнений и неравенств. Так, с термином «переменная» связана операция подстановки числа вместо буквы, поэтому в уравнение а(х)= b [х) можно подставлять вместо х конкретные числа и находить среди них корни. Термин же «неизвестное» обозначает фиксированное число; подставлять число на место буквы, обозначающей неизвестное, поэтому нелогично. Нахождение корней уравнения а <х)=b <х)с этой точки зрения должно осуществляться с помощью действий, при которых это равенство рассматривают как верное и пытаются привести его к виду х=х 0 , где х 0 числовое выражение.

При описании методики мы будем пользоваться термином «неизвестное», который ближе, чем «переменная», связан с алгебраическим методом решения текстовых задач и тем самым с прикладной направленностью линии уравнений и неравенств.

2. Равносильность и логическое следование.

Рассмотрим логические средства, используемые в процессе изучения уравнений и неравенств. Наиболее важным среди них является понятие равносильности.

Напомним, что уравнения называются равносильными, если равносильны соответствующие предикаты, т. е. если выполнены условия: области определения уравнений одинаковы и множества их корней равны. Имеются два пути установления равносильности уравнений. Первый: используя известные множества корней уравнений, убедиться в их совпадении; например, уравнения х + 1=х + 2 и x 2 + 1=x 2 + 2 равносильны, потому что не имеют корней. Второй: используя особенности записи уравнений, осуществить последовательный переход от одной записи к другой посредством преобразований, не нарушающих равносильности.

Очевидно, что для большинства заданий второй путь более характерен. Это и понятно, ведь равносильность в теории уравнений как раз и используется для того, чтобы указать конкретные правила для решения уравнений. Однако в преподавании ограничиваться им нецелесообразно, поскольку он относится только к практическому применению равносильности и требует первого для своего обоснования. Вместе с тем усвоение понятия равносильности как равносильности предикатов требует значительной культуры мышления и не может быть усвоено на начальных этапах изучения школьного курса алгебры без специальных значительных усилий.

В отношении формирования понятия равносильности и его применения к решению уравнений учебные пособия по алгебре можно разделить на две группы. К первой относятся те пособия, в которых использование равносильных преобразований основано на явном введении и изучении понятия равносильности; ко второй — те, в которых применение равносильных преобразований предшествует выделению самого понятия. Методика работы над понятием равносильности имеет при указанных подходах значительные отличия.

В связи с рассматриваемым вопросом в изучении материала линии уравнений и неравенств можно выделить три основных этапа. Первый этап охватывает начальный курс школьной математики и начало курса алгебры. Здесь происходит ознакомление с различными способами решения отдельных, наиболее простых классов уравнений. Используемые при этом преобразования получают индуктивное обоснование при рассмотрении конкретных примеров. По мере накопления опыта индуктивные рассуждения все чаще заменяются такими, где равносильность фактически используется, но сам термин не употребляется. Длительность этого этапа может быть различной; она зависит от методических установок, принятых в данном учебном пособии.

На втором этапе происходит выделение понятия равносильности и сопоставление его теоретического содержания с правилами преобразований, которые выводятся на его основе. Длительность этого этапа незначительна, поскольку на нем происходит только выделение этого понятия и его использование на нескольких теоретических примерах.

На третьем этапе на основе общего понятия равносильности происходит развертывание и общей теории, и теории отдельных классов уравнений. Такой стиль характерен для курса алгебры и начал анализа, изучаемого в старших классах средней школы. Он применяется и в некоторых пособиях по алгебре для неполной средней школы.

Помимо равносильных, к изучению материала линии уравнений применяются и другие, вообще говоря, не равносильные преобразования. Большая часть из них в школьном курсе не выявляется, хотя они более или менее существенно используются, в частности, при изучении уравнений. Единственным исключением служит понятие логического следования, которое в ряде учебных пособий является предметом изучения. Методика работы с понятием логического следования (а также с представлением о нем в случае, если понятие не вводится) имеет много общих черт с методикой изучения равносильности и равносильных преобразований.

Логическое следование начинает применяться значительно позже равносильности и осваивается в качестве некоторого дополнения к нему. При решении уравнений при прочих равных условиях предпочтение отдается равносильному преобразованию; логическое следование применяется лишь тогда, когда соответствующего равносильного преобразования найти не удается. Это, однако, не означает, что использование логического следования — вынужденная мера. Нередко в практике работы учителей логическое следование применяется как прием, упрощающий процесс решения, если сохранение равносильности может быть достигнуто сравнительно дорогой ценой.

Среди неравносильных преобразований есть преобразования, не являющиеся логическим следованием. Например, переход к рассмотрению частного случая (пример: переход от уравнения а — b = 0 к рассмотрению уравнения а=0). Такие переходы можно рассматривать как практические приемы, позволяющие сосредоточить внимание на отдельных шагах процесса решения уравнения.

3. О классификации преобразований уравнений и их систем.

Можно выделить три основных типа таких преобразований:

1) Преобразование одной из частей уравнения.

2) Согласованное преобразование обеих частей уравнения.

3) Преобразование логической структуры.

Поясним эту классификацию.

Преобразования первого типа используются при необходимости упрощения выражения, входящего в запись решаемого уравнения. Например, решая уравнение cos x — tg x = l , можно пытаться заменить выражение в левой части более простым. В данном случае соответствующее преобразование приводит к уравнению sin x = 1, неравносильному исходному за счет изменения области определения. Возможность получения при такой замене уравнения, неравносильного данному, приходится учитывать при изучении некоторых типов уравнений, например тригонометрических или логарифмических. В классе дробно-рациональных уравнений с этим явлением приходится сталкиваться гораздо реже. (Здесь это связано с возможностью потери корней при сокращении дроби.) Наконец, в классе целых алгебраических уравнений рассматриваемый тип преобразований всегда приводит к уравнениям, равносильным данным.

Преобразование одной из частей уравнения используют раньше всех других преобразований уравнений, это происходит еще в начальном курсе математики. Прочность владения навыком преобразований этого типа. имеет большое значение для успешности изучения других видов преобразований, поскольку они применяются очень часто.

Основой преобразований данного типа являются тождественные преобразования. Поэтому классифицировать их можно в соответствии с классификацией тождественных преобразований, например раскрытие скобок, приведение подобных членов и т. д.

Преобразования второго типа состоят в согласованном изменении обеих частей уравнения в результате применения к ним арифметических действий или элементарных функций. Общей основой всех преобразований этого типа является логический принцип, выражающий характеристическое свойство равенства выражений: если выражения а и b равны и в выражении F (х) выделена переменная х, которая может принимать значение а , то выражения F (а) и F <b ) равны: a = b => F <a )= F ( b ).

Преобразования второго типа сравнительно многочисленны. Они составляют ядро материала, изучаемого в линии уравнений.

Приведем примеры преобразований этого типа.

1)-Прибавление к обеим частям уравнения одного и того же выражения.

2) Умножение (деление) обеих частей уравнения на одно и то же выражение.

3) Переход от уравнения a = b к уравнению ( a )= ( b ) , где — некоторая функция, или обратный переход.

К третьему типу преобразований относятся преобразования уравнений, и их систем, изменяющие логическую структуру заданий. Поясним использованный термин «логическая структура». В каждом задании можно выделить элементарные предикаты — отдельные уравнения. Под логической структурой задания мы понимаем способ связи этих элементарных предикатов посредством логических связок конъюнкции или дизъюнкции.

В зависимости от средств, которые используются при преобразованиях, в этом типе можно выделить два подтипа: преобразования, осуществляемые при помощи арифметических операций и при помощи логических операций. Первые можно назвать арифметическими преобразованиями логической структуры, вторые — логическими преобразованиями логической структуры.

Наиболее важными для школьного курса математики арифметическими преобразованиями логической структуры являются:

а) Переход от уравнения a * b =0 к совокупности уравнений а=0, b =0.

Сюда же относятся сходные преобразования для уравнений вида ,

б) Переход от системы уравнений к одному уравнению посредством почленного сложения, вычитания, умножения или деления уравнений, входящих в систему.

Приведем примеры логических преобразований логической структуры:

а) Выделение из системы уравнений одного из компонентов. Например,

при решении системы уравнений способом подстановки можно

в качестве первого шага рассмотреть первое из уравнений (это и будет преобразование данного типа, условно его, можно изобразить так: А В——>А). Смысл такого преобразования в том, что выделенное уравнение можно подвергать дальнейшим преобразованиям независимо от той системы, в которую оно входит.

б) Замена переменных. В простейшем случае замена переменных состоит

в переходе от уравнения F ( f ( x ))=0 к системе Связь этой системы

и данного уравнения такова: число Х 0 решение уравнения F (f (х))=0 тогда и только тогда, когда пара 0 , f (х 0 )) — решение системы. Это преобразование позволяет одно «сложное» уравнение заменить системой более простых уравнений. Так решаются биквадратные уравнения, многие типы иррациональных и трансцендентных уравнений (например, при их сведении к алгебраическим уравнениям).

в) Преобразование, противоположное замене переменных, т. е. переход от

Корни этого уравнения и решения данной системы связаны так же, как при замене переменной. Это преобразование назовем подстановкой.

На основе подстановки в процессе обучения алгебре вводится стандартный метод решения системы уравнений с двумя неизвестными: в одном из уравнений одно из неизвестных выражается через другое, полученную при этом систему решают методом подстановки. Этот метод превращается в дальнейшем в курсе школьной алгебры в универсальный метод уменьшения количества неизвестных в системе.

г) Укажем еще на преобразования, основанные на тождественно истинных формулах алгебры логики, имеющих вид равносильности или логического следования. Преобразования эти весьма многочисленны, но в практике школьного обучения используются редко. Приведем пример такого преобразования. При решении уравнения 2 x +3| x |= l можно в соответствии с определением модуля рассмотреть случаи х 0 или х т. е. решить систему

В процессе решения логическая структура этой системы преобразуется к виду совокупности двух систем:

Таким образом, происходит изменение логической структуры, осуществляемое по схеме A /\(В\/ С) —> ( A /\В)\/(А /\С>.

Изучение и использование преобразований уравнений и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры. Большое значение имеет выяснение вопросов, относящихся к характеризации производимых преобразований: являются ли они равносильными или логическим следованием, требуется ли рассмотрение нескольких случаев, нужна ли проверка? Сложности, которые приходится здесь преодолевать, связаны с тем, что далеко не всегда возможно привести характеризацию одного и того же преобразования однозначно: в некоторых случаях оно может оказаться, например, равносильным, в других равносильность будет нарушена.

В итоге изучения материала линии уравнений учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.

4. Логические обоснования при изучении уравнений .

При изучении материала линии уравнений значительное внимание уделяется вопросам обоснования процесса решения конкретных заданий. На начальных этапах изучения курса алгебры и в курсе математики предшествующих классов эти обоснования имеют эмпирический, индуктивный характер. По мере накопления опыта решения уравнений, систем различных классов все большую роль приобретают общие свойства преобразований. Наконец, достигнутый уровень владения различными способами решения позволяет выделить наиболее часто используемые преобразования (равносильность и логическое следование). Учебные пособия по алгебре имеют существенные различия в отношении описанных способов обоснования. Тем не менее выделяются все указанные направления, причем в общей для них последовательности. Кратко рассмотрим каждое из этих направлений.

Эмпирическое обоснование процесса решения . Таким способом описываются приемы решения первых изучаемых классов уравнений. В частности, это характерно для уравнений 1-й степени с одним неизвестным. Методика изучения этих уравнений состоит в предъявлении алгоритма решения таких уравнений и разборе нескольких типичных примеров.

Указанный алгоритм формируется, естественно, далеко не сразу. Перед этим разбирается несколько примеров, причем цель рассмотрения состоит в выделении в последовательности действий нужных для описания алгоритма операций. Объяснения учителя могут быть такими: «Нужно решить уравнение 5 x +4=3 x +10. Постараемся все члены, содержащие неизвестное, собрать в одной части, а все члены, не содержащие неизвестное,— в другой части уравнения. Прибавим к обеим частям уравнения число (—4), данное уравнение примет вид 5х=3 x +10—4. Теперь прибавим к обеим частям уравнения (—3х), получим уравнение 5х—3x=10—4 . Приведем подобные члены в левой части уравнения, а в правой вычислим значение выражения; уравнение примет вид 2х=6. Разделим обе части уравнения на 2, получим х=3». Этот рассказ сопровождается последовательно возникающей на доске записью преобразований:

Анализируя решение, учитель может прийти к правилам решения уравнений 1-й степени с одним неизвестным. Обратим внимание на некоторые формальные пробелы этого изложения. Прежде всего, в таком рассказе не акцентируется внимание на том, что под действием преобразований уравнение преобразуется в некоторое новое уравнение. Ученики как бы имеют дело все время с тем же уравнением. Если бы упор делался непосредственно на переход от одного уравнения к другому, то это потребовало бы более внимательного анализа представлений, связанных с равносильностью, что как раз не характерно для первых этапов обучения алгебре.

Далее, вопрос о том, все ли корни уравнения найдены, здесь не ставится. Если даже он и возникает по ходу обсуждения процесса решения, то ответ на него, как правило, не дается. Основную роль играют действия по переносу членов из одной части уравнения в другую, группировка подобных членов.

Таким образом, вопросы обоснования решения уравнения стоят на втором плане, а на первом — формирование прочных навыков преобразований. Отсюда можно сделать вывод: на этом этапе проверка найденного корня служит необходимой частью обоснования правильности решения.

Дедуктивное обоснование процесса решения уравнений без явного использования понятия равносильности . Разобранное обоснование процесса решения не всегда может быть эффективно использовано при изучении других классов уравнений. Тем или иным способом к изучению материала линии уравнений нужно привлекать различные приемы дедуктивного обоснования. Это связано с возрастанием сложности предлагаемых заданий по сравнению с исходным классом (уравнения 1-й степени с одним неизвестным). При этом постоянно приходится опираться на свойства числовой системы и основные понятия теории уравнений (корень уравнения, множество корней уравнения, что значит «решить уравнение»).

При наличии в курсе теоретико-множественных понятий дедуктивное обоснование решения уравнений проводится так: при переходе от рассмотрения уравнения = g к уравнению 1 == g 1 обращается внимание на совпадение множеств корней этих уравнений и этот факт обосновывается при помощи свойств равенства числовых выражений. Например, с этой точки зрения переход от уравнения 3х+2у=5 к уравнению у=—1,5х+2,5 обосновывается с использованием свойства: если а= b верное равенство, то а+с= b и ас= b с также верные равенства.

При отсутствии теоретико-множественных представлений тот же переход производится тем же, по существу, способом, но с использованием конкретного решения одного из этих двух уравнений. Рассуждения при этом проводятся так: «Пусть ( х 0 , y 0 ) — решение первого уравнения, т. е. 3 x 0 +2 y 0 =5 . Пользуясь свойствами числовых равенств, данное равенство можно записать в виде y 0 = — 1,5х 0 +2,5 , значит, ( х 0 , y 0 ) решение второго уравнения». Так же проверяется обратное заключение.

Внешне различие между двумя способами обоснования (помимо того, что в первом используется термин «множество») проявляется в том, что в первом из них пользуются свойствами равенств с переменными, а во втором — свойствами числовых равенств. Сложность обучения любому из этих способов примерно одинакова.

Переход к дедуктивному обоснованию может производиться на различном материале. Например это можно сделать при изучении линейного уравнения с двумя переменными, системы двух линейных уравнений с двумя неизвестными, линейного уравнения с одним неизвестным.

Необходимо, однако, отметить, что, каким бы ни был способ обоснования, он не является самоцелью в курсе школьной математики. Цель изучения обоснований состоит в обеспечении осознанности процесса решения. После того как она достигнута, дальнейшее использование уже обоснованного приема приводит к формированию навыка, которым учащиеся пользуются в дальнейшем, возвращаясь к обоснованию приема только изредка.

Введение для обоснования решения уравнений и их систем понятий равносильности и логического следования . Рассмотренные приемы обоснования опираются на связь линии уравнений и неравенств с числовой системой. Однако последовательное применение этих приемов затруднительно из-за громоздкости рассуждении. Поэтому на определенном этапе изучения содержания курса алгебры происходит выявление общелогической системы обоснований. Уже говорилось о том, что в эту систему входят понятия равносильности и логического следования.

Обратимся к разобранному уравнению 5х+4=3 x +10. С использованием равносильности его решение проводится так: «Поскольку перенос членов уравнения из одной части в другую с изменением знака — равносильное преобразование, то, осуществив его, приходим к уравнению, равносильному данному: 5х—3х=10—4. Упрощая выражения в левой и правой частях уравнения, получим 2х=6, откуда х=3».

Отметим особенности приведенного решения по сравнению с изложенным ранее. Прежде всего, оно более свернуто, предполагает намного более высокий уровень владения материалом курса алгебры. Поэтому применению такого способа решения уравнений и их систем должна предшествовать большая подготовительная работа. Объем предварительного материала зависит от общих методических установок, используемых в учебных пособиях. Например, в учебниках алгебры для VI—VIII классов под редакцией А. И. Маркушевича понятие о равносильности вводится спустя полтора года после начала изучения систематического курса алгебры. В других курсах оно вводится гораздо позже, в старших классах.

В случае отсутствия понятий равносильности и логического следования описание процесса решения также становится постепенно все более сжатым. Отсутствие указанных терминов проявляется в том, что само описание решения не содержит элементов обоснования, которое в этих условиях произвести достаточно сложно. По этой причине в пособиях, где равносильность и логическое следование появляются поздно, сравнительно большое внимание уделяется формированию не общих приемов решения уравнений, а навыков решения уравнений тех или иных классов.

Использование логической терминологии при описании решений позволяет параллельно с нахождением корней получать также и логическое обоснование.» Особенно велика роль логических понятий при итоговом обобщающем повторении курса алгебры и всего курса математики средней школы. Поскольку при этом необходимо выявить структуру крупных частей изученного материала, отсутствует возможность вновь пройти весь путь нахождения приемов решений различных классов уравнений, неравенств и их систем. Логические понятия позволяют не только быстро восстановить путь нахождения таких приемов, но и одновременно обосновать их корректность. Тем самым происходит развитие средств логического мышления учащихся. Учитывая это, на этапах обобщающего повторения целесообразно формулировать свойства равносильности и логического следования в общем виде и иллюстрировать их заданиями, относящимися к различным классам уравнений и их систем.

§ 4. Обобщенные приемы решения уравнении с одной переменной в школьном курсе алгебры

Выделение приемов решения уравнений

Рассмотрим закономерность формирования обобщенного приема решения уравнений с одним неизвестным алгебраическим способом. Она вытекает из следующего. Для того чтобы решить любое уравнение с одной переменной, учащийся должен знать: во-первых, правило, формулы или алгоритмы решения простейших уравнений данного вида и, во-вторых, правила выполнения тождественных и равносильных преобразований, с помощью которых данное уравнение можно привести к простейшим.

Таким образом, решение каждого уравнения складывается из двух основных частей: 1) преобразования данного уравнения к простейшим; 2) решения простейших уравнений по известным правилам, формулам или алгоритмам. При этом если вторая часть решения является алгоритмической, то первая — в значительной степени (и тем большей, чем сложнее уравнение) — эвристической. Именно правильный выбор необходимых тождественных и равносильных преобразований, как и всякий поиск решения задачи, представляет наибольшую трудность для учащихся.

Обучение решению уравнений начинается с простейших их видов, и программа обусловливает постепенное накопление как их видов, так и «фонда» тождественных и равносильных преобразований, с помощью которых можно привести произвольное уравнение к простейшим. В этом направлении следует строить и процесс формирования обобщенных приемов решения уравнений в школьном курсе алгебры.

Обобщение приемов решения уравнений

Обобщение способов деятельности учащихся при решении уравнений происходит постепенно. Выделим следующие этапы, процесса обобщения приемов решения уравнений:

решение простейших уравнений данного вида;

анализ действий, необходимых для их решения;

вывод алгоритма (формулы, правила) решения и запоминание его;

решение несложных уравнений данного вида, не являющихся простейшими;

анализ действий, необходимых для их решения;

формулировка частного приема решения;

применение полученного частного приема по образцу, в сходных ситуациях, в легко осознаваемых вариациях образца;

работа по описанным этапам для следующих видов уравнений согласно программе;

сравнение получаемых частных приемов, выделение общих действий в их составе и формулировка обобщенного приема решений.

применение обобщенного приема в различных ситуациях, перенос и создание на его основе новых частных приемов для других видов уравнений.

Учитель руководит всем процессом обобщения, его деятельность направлена на создание ситуаций (условий) для реализации этой схемы в процессе поэтапного формирования приемов: подбор упражнений и вопросов для диагностики контроля, помощь учащимся в осознании состава приема решения, его формулировки, отработки.

В V—VI классах при изучении числовых множеств в учебниках формулируется довольно много алгоритмов действий над числами и правил простейших тождественных преобразований выражений. Формулировка частных приемов решения различных простейших уравнений первой степени может естественно вписаться в этот процесс, не ограничиваясь, как это делают школьные учебники алгебры, объяснениями на примерах.

Проводя работу по этапам процесса обобщения, к концу изучения курса математики V—VI классов можно сформировать у учащихся, во-первых, обобщенный прием решения уравнения первой степени с одной переменной в следующем виде:

1) рассмотреть данное уравнение, отметить его особенности;

2) установить, какие из следующих упрощений уравнения можно сделать: перенос слагаемых из одной части уравнения в другую, приведение подобных слагаемых в левой и правой частях уравнения, раскрытие скобок, деление обеих частей на коэффициент при неизвестном;

3) упростить уравнение;

4) найти значение неизвестного;

5) записать ответ.

Во-вторых, можно сформулировать и обобщенный прием решения задач с помощью уравнений, например, так, как это сделано в учебнике «Алгебра-7» под редакцией С. А. Теляковского (М., 1989): «. поступают следующим образом: обозначают некоторое неизвестное число буквой и, используя условие задачи, составляют уравнение; решают это уравнение; истолковывают полученный результат в соответствии с условием задачи».

В таком виде оба приема следует повторить в начале систематического изучения курса алгебры в VII классе, затем уточнить их с учетом того, что здесь дают определения основным понятиям (уравнения, корня, равносильности, линейного уравнения).

Способы решения квадратных уравнений различных видов школьные учебники по алгебре объясняют также на примерах. Отработав частные приемы решения неполных квадратных уравнений и по дискриминанту, уместно сформулировать обобщенный прием решения квадратного уравнения (по аналогии с приемом решения уравнения первой степени):

1) определить, является ли уравнение простейшим (неполным или полным) квадратным уравнением; если «да», то п. 4, если «нет» — п. 2;

2) установить, какие из следующих тождественных и равносильных преобразований нужно выполнить, чтобы привести уравнение к простейшему: раскрытие скобок, приведение к общему знаменателю, перенесение членов из одной части в другую, приведение подобных;

3) привести с помощью выбранных преобразований уравнение к квадратному уравнению ах 2 + b х+с=0, где а>0 ;

4) проверить равенство коэффициентов b и c нулю; если b = 0 или c =0, то п. 5, если b с 0, то п. 6;

6) найти дискриминант уравнения D=b 2 —4ac ;

7) найти х по формуле: при D >0 при D =0

при D решений нет;

8) если нужно, сделать проверку;

9) записать ответ.

Формирование этого приема не только помогает учащимся овладеть способом решения квадратных уравнений, но и подсказывает им общие компоненты деятельности при алгебраическом решении уравнений. Та же идея подкрепляется решением задач с помощью квадратных уравнений, где уместно использовать перенос уже известного приема решения задач с помощью уравнений первой степени.

Сформулируем обобщенный прием решения уравнений первой степени с одной переменной.

1) определить, является ли уравнение (неравенство) линейным; если «да», то п. 4, если «нет» — п. 2;

2) установить, какие из следующих тождественных и равносильных преобразований нужно выполнить, чтобы привести уравнение к линейному: раскрытие скобок, приведение к общему знаменателю, перенесение членов из одной части в другую, приведение подобных;

3) привести с помощью выбранных преобразований уравнение к линейному ах= b ;

5) если нужно, сделать проверку, исследование;

6) записать ответ (если нужно, изобразив его на числовой оси).

Сформулировать аналогично обобщенный прием решения уравнений второй степени с одной переменной.

Изучение рациональных уравнений вносит в процесс решения уравнений существенно новый компонент, связанный с рассмотрением области определения выражения, входящего в уравнение, и возможных посторонних корней.

Учитывая это, сформулируем прием решения рационального уравнения:

1) определить, является ли данное дробное уравнение простейшим, т. е. уравнением вида ; если «да», то п. 4, если «нет» — п. 2;

2) установить, какие из следующих тождественных и равносильных преобразований нужно выполнить, чтобы привести уравнение к виду : раскрытие скобок, перенесение членов из одной части в другую, приведение подобных, приведение к общему знаменателю;

3) привести с помощью выбранных преобразований уравнение к виду ;

4) заменить данное уравнение равносильной ему системой

а) целое уравнение, полученное из данного умножением на общий знаменатель Q ( x );

б) неравенство, характеризующее область определения дроби;

5) решить полученную систему;

6) если нужно, сделать проверку;

7) записать ответ.

Программа по математике IX класса предусматривает знакомство и с некоторыми общими для всех видов уравнений приемами преобразования уравнений к простейшим (разложение левой части на множители и введение вспомогательной переменной), графическим способом решения уравнений, решения систем уравнений второй степени, решения задач с помощью систем уравнений на примерах.

Нетрудно заметить, что разложение левой части на множители и введение вспомогательной переменной служит очередным расширением «фонда» преобразований уравнений к простейшим. Тогда к концу изучения курса алгебры неполной средней школы обобщенный прием алгебраического решения уравнений может иметь следующий вид:

1) определить, является ли данное уравнение простейшим уравнением какого-нибудь вида; если «да», выполнять п. 4, если «нет» — п. 2 ;

2) установить, какие и в каком порядке нужно выполнить тождественные и равносильные преобразования, чтобы привести уравнение к простейшим данного вида: раскрытие скобок, приведение к общему знаменателю, перенесение членов из одной части в другую, приведение подобных, разложение левой части на множители, введение вспомогательной переменной, возведение обеих частей в степень, замена уравнения равносильной ему системой уравнений;

3) с помощью выбранных преобразований привести уравнение к простейшим;

4) решить известным способом простейшее уравнение;

5) если нужно, сделать проверку, исследование;

6) записать ответ.

Последняя ступень в освоении школьной теории уравнений относится к организации имеющихся у учащихся знаний и опыта решения уравнений в единую, целостную систему. Для этой ступени характерны более сложные задания, в которых возрастает роль таких компонентов, как распознавание возможности сведения задания к одному из типовых классов, организация процесса решения. Здесь существенно производить разбор решаемых заданий, выделять особенности различных классов заданий и их общие черты, отмечать ценность тех или иных применяемых средств.

По своему положению в курсе алгебры эта ступень может быть отнесена к прохождению последних тем курса и к итоговому повторению; в результате формируется общая картина связей изученных классов уравнений, неравенств и их систем. Для уравнений и систем уравнений ее можно изобразить в виде схемы

В курсе математики старших классов учащиеся сталкиваются с новыми классами уравнений, систем или с углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную систему; они дополняют ее новым фактическим содержанием, не меняя сложившиеся связи, соединяющие различные классы. На этом, более высоком уровне владения материалом связи становятся намного более освоенными, так что учащиеся в процессе выполнения заданий могут самостоятельно их восстанавливать.

§ 5. Методика изучения основных классов уравнений и их систем.

1. Линейные уравнения с одним неизвестным.

Этот класс уравнений — первый в курсе алгебры, поэтому от характера его изучения в значительной мере зависят особенности организации всего последующего изучения линии уравнений. При изучении этого класса уравнений, помимо его непосредственного выделения и описания, приходится останавливаться на вопросах, относящихся к формированию общего понятия об уравнении, вводить терминологию.

В § 2 были приведены различные взгляды на содержание понятия уравнения. Было отмечено, что каждый из них имеет определенную ценность в развертывании содержания курса алгебры. Поскольку рассматриваемый класс является первым в курсе, указанные взгляды тем или иным способом должны найти место на этом этапе изучения материала линии уравнений и неравенств.

Первая методическая задача, с которой учитель сталкивается, приступая к изложению этой темы, состоит в выделении формальной части понятия уравнений из той содержательной ситуации, в которой оно возникает. В качестве такой ситуации обычно выступает несложная текстовая задача, решение которой алгебраическим методом приводит к уравнению первой степени с одним неизвестным. Учителю следует обратить внимание учащихся на основной метод, примененный в решении задачи,— переход к ее алгебраической модели, общий вид которой f <x )= g ( x ), где f u g некоторые выражения, содержащие неизвестное х. Далее, на основе анализа конкретно полученной формулы учитель приводит формулировку общего понятия уравнения, принятую в учебнике, и вводит (или напоминает) связанные с ним термины. Вслед за этим нужно обратить внимание на те формальные характеристики составленного уравнения, которые уже непосредственно приводят к описанию изучаемого конкретного класса уравнений.

В различных учебниках применяется разная терминология, относящаяся, по существу, к одному и тому же классу уравнений. В этом отношении необходимо быть чрезвычайно внимательным и употреблять только те термины, которые введены в учебнике, причем именно в том смысле, который им придается.

Опишем несколько подходов к выделению первого изучаемого в курсе алгебры класса уравнений.

В учебнике для для 6 класса средней школы Макарычева это линейные уравнения с одной переменной, т. е. уравнения вида ах= b , где х — переменная, а и b числа. Естественно, что это определение выделяет очень узкий класс уравнений, недостаточный для решения самых простых задач. Какую роль он выполняет? Это роль двоякая. Во-первых, уравнения этого класса просто решаются, причем так описанный класс допускает полное исследование (что и осуществляется в учебнике). Во-вторых, запись уравнений из этого класса играет роль образца, к которому могут быть сведены посредством простейших преобразований уравнения более широкого класса. Большая часть времени, отводимого на изучение линейных уравнений по этому учебнику, используется именно на то, чтобы сформировать навыки сведения к линейным других уравнений, не входящих в этот класс.

В [20] 2 вводится и рассматривается класс уравнений, названный по-иному — уравнения первой степени с одним неизвестным. К особенностям введения этого класса следует отнести то, что явного определения он не получает: определение заменяется описанием и иллюстрацией несколькими примерами. Предполагается, что в итоге их рассмотрения учащиеся получат достаточно ясное представление об объеме понятия. Основное внимание уделяется изложению правил последовательного преобразования уравнения ко все более простому виду. Фактически при этом приходят к уравнению ах= b . Этот последний класс уравнений явно не выделяется, но на примерах рассматриваются все возможные случаи решения уравнений из него. Такой подход позволяет сконцентрировать внимание непосредственно на алгоритмах решения уравнений.

В [159] 3 также вводится понятие уравнения первой степени с одним неизвестным и объясняется алгоритм его решения. В отличие от [20] здесь дано явное определение: «Алгебраическое уравнение от одного неизвестного называется уравнением первой степени, если обе его части являются многочленами первой степени относительно неизвестного». По поводу этого определения следует сказать, что по смыслу понятия степени многочлена, введенного в этом учебнике, оно относится к конкретной записи многочлена без приведения подобных членов; например, многочлен 2х+ 1 —(2х—3) — первой степени.

В [129] 4 в системе изучения присутствуют оба понятия: и линейного уравнения с одним неизвестным, и уравнения первой степени. Первое из них описывает широкий класс уравнений (левая и правая части уравнения — нуль или многочлены не выше первой степени), а второе—более узкий (уравнение вида kx + b =0, k 0).

Выделение подкласса уравнений первой степени в классе линейных уравнений в принципе может облегчить изложение этого класса. В частности, введение двух терминов (линейное уравнение, уравнение первой степени) позволяет четче описать сам процесс решения. Однако при этом возникает необходимость в усвоении двух, а не одного термина. Точно так же указание явного определения изучаемого понятия по сравнению с описанием имеет преимущество большей четкости, но предъявляет более высокие требования к развитию логического мышления учащихся.

Охарактеризованные четыре варианта изложения теории уравнений, имеющих вид ax + b == сх + d , свидетельствуют о том, что эта теория допускает несколько различных по стилю и методике изучения развертывании. Можно (как это сделано в первом и четвертом случаях) сконцентрировать внимание на выделении более узкого класса, играющего роль «канонического вида», к которому приводятся данные уравнения; но можно (как во втором и третьем случаях) обойтись и без этого, а сразу изучать способы решения уравнений общего класса, используя изученные типы преобразований уравнений. Точно так же можно с разной степенью выявленности описывать вводимые термины: четким определением или же посредством описания.

Несмотря на наличие таких разных подходов к введению первого класса уравнений, значительная часть методики его изучения одинакова при любом из них. Это объясняется прежде всего тем, что основной целью изучения в данном случае всегда является освоение правил решения уравнений данного класса, образующих сравнительно компактную систему и относящихся исключительно к преобразованиям буквенно-числовых выражений. В последнем отношении рассматриваемый класс сильно отличается от большинства других классов, в изучении которых определенную, а иногда значительную роль играют логические, графические, вычислительные компоненты.

При изучении этого класса уравнений учащиеся подходят к осознанию того, что уравнения, с первого взгляда мало отличные друг от друга, могут резко различаться по количеству корней. Это ответственный момент, один из самых существенных в изучении всего курса алгебры, поскольку при этом учащиеся впервые сталкиваются с необходимостью теоретического осмысления именно класса уравнений, а не каждого уравнения в отдельности.

Конкретные способы изложения материала, относящегося к исследованию, могут быть различными. Зависят они в первую очередь от стиля выделения этого класса. Если он выделяется явным определением, то и результаты исследования формулируются в виде четкой системы условий, при выполнении которых имеет место один из трех возможных случаев. Если же этот класс уравнений выделяется посредством описания, то реализация каждого из этих случаев показывается на примерах, но общего обоснования не дается.

Отметим еще, что рассматриваемый класс является единственным, для которого в современной методике есть разные подходы к проведению исследований. Для каждого из остальных классов уравнений, неравенств, систем исследование проводится, по существу, одинаково при любом построении курса алгебры. Именно те классы уравнений, неравенств, систем, алгоритмы решения которых заучиваются при усвоении материала, исследуются аналогично первому способу; для тех классов, где результирующих формул для получения ответа не указывается, используется второй способ.

В итоге тематического изучения первого класса уравнений учащиеся должны овладеть: алгоритмом решения уравнений данного класса; умением применять результаты исследования уравнений данного класса; основными понятиями общей теории уравнении;

применением уравнений данного класса к решению текстовых задач.

Системы двух линейных уравнений с двумя неизвестными.

С помощью линейных уравнений с одним неизвестным можно решать многочисленные .задачи, в которых либо имеется только одно неизвестное, либо среди неизвестных можно указать одно «ведущее», через которое выражаются остальные. Но многие ситуации описываются несколькими параметрами, вообще говоря, равноправными друг другу; эти ситуации требуют разработки новых алгебраических средств их изучения. В качестве одного из таких средств в курсе алгебры выступает класс систем двух линейных уравнений, с двумя неизвестными.

Приведенное рассуждение может быть положено в основу методики изучения указанного класса. Такой способ введения подчеркивает прикладную значимость уравнений с двумя неизвестными, однако изучение этого класса требует введения обширной совокупности формальных понятий и методов, поэтому отмеченная схема изложения, в которой проводится содержательная мотивировка данного класса, не единственный способ изложения этого материала.

Изложение темы можно начать с рассмотрения понятий, входящих в качестве компонентов в понятие системы линейных уравнений с двумя неизвестными; их соединение формирует представление о данном классе. Эти компоненты таковы: представление о конъюнкции логических условий, которое формализуется в понятии системы уравнений; представление о наличии в составе логического условия двух переменных, представление о линейном уравнении с двумя неизвестными, непосредственно связанное с данным классом систем.

Рассмотрим эти компоненты подробнее. Полезность изучения понятия уравнения с двумя неизвестными перед введением понятия о системе уравнений заключается в том, что при этом могут быть рассмотрены два важных в дальнейшем вопроса: выражение одного из неизвестных через другое (это преобразование используется при изучении метода подстановки) и введение понятия графика уравнения с двумя неизвестными.

Существенно новым представлением, которое получают учащиеся при изучении этой темы, является представление о том, что решением уравнения с двумя неизвестными служит не число, а упорядоченная пара чисел. Вторым представлением, резко расширяющим кругозор учащихся, служит то, что множество решений уравнения с двумя неизвестными, как правило, бесконечно и его изображение на координатной плоскости — некоторая линия.

Изучение этой темы может рассматриваться как определенный мостик, связывающий понятие функции и понятие уравнения с двумя неизвестными: с одной стороны, уравнение с двумя неизвестными, в котором одно из них выражено через другое, по виду формулы совпадает с функцией; с другой — оказывается, что один и тот же геометрический образ является и графиком уравнения, и графиком функции. Эти первые представления в дальнейшем подвергаются неоднократному уточнению и переосмысливанию, но уже и в таком несовершенном виде они с успехом используются при изучении систем уравнений.

Тема «Уравнение с двумя неизвестными» в случае наличия ее в курсе изучается недолго. Цель ее изучения состоит скорее во введении новых представлений, чем в развитии навыков.

Непосредственно за ней или на ее месте рассматривается тема «Линейные уравнения с двумя неизвестными». Этот класс изучается детальнее. Здесь необходимо приобрести навыки перехода от линейного уравнения ах+ b у=с к уравнению y = kx + b или x = k 1 y + b 1 . Кроме того, требуется усвоить факт: график линейного уравнения ах + b у= с, где а 0 или b 0, есть прямая линия, а также научиться строить график конкретных линейных уравнений с двумя неизвестными.

Непосредственно перед изучением систем линейных уравнений может быть введено понятие о системе уравнений с двумя неизвестными. Но здесь необходимы некоторые уточнения. Понятие системы уравнений в курсе школьной математики строго определено быть не может из-за отсутствия в нем понятия конъюнкции. Однако для развития теории уравнений достаточно оказывается формировать представление о системе уравнений косвенным образом, посредством указания на цель — нахождение общих решений, двух данных уравнений. Заметим, что общее понятие о системе уравнений в этот момент и необязательно вводить. Общее понятие формируется постепенно на основе своего ведущего частного случая — системы линейных уравнений,— который и составляет непосредственный предмет изучения. Фактически получается так, что понятие о системе уравнений формируется у учащихся на основе осмысления понятия «решение уравнения» и представления о том, что значит решить уравнение. |

Переход к изучению системы двух линейных уравнений с двумя неизвестными целесообразно осуществить при помощи того же процесса выделения математических понятий из текстовой задачи, который был использован в изучении первого класса уравнений. Если реализуемая в учебнике методическая система не содержит пропедевтики этого понятия, такой подход является единственно возможным. Однако даже и при наличии подготовки он позволяет уточнить формальные характеристики вводимого класса систем уравнений и подчеркнуть некоторые существенные моменты: например, что решением системы является не одно число, а пара чисел

Основное содержание рассматриваемой темы состоит в изучении двух алгебраических способов решения таких систем, графического способа решения и исследования систем этого класса.

Отметим наиболее важные отличия в изучении этого материала от изучения класса линейных уравнений с одним неизвестным.

Алгоритмы решения систем линейных уравнений намного сложнее алгоритма решения линейного уравнения с одним неизвестным. Поэтому при их изучении учитель должен четко указывать последовательность операций, используемых в этих алгоритмах, а также провести изучение каждого действия. Эти алгоритмы, по существу, являются первым нетривиальным примером алгоритма в линии уравнений и неравенств.

В развертывании содержания данной темы используются геометрические представления, которые не только в ряде мест могут пояснить изложение, но имеют важное самостоятельное значение. Наиболее принципиальным является их применение для проведения исследования данного класса систем. Возможны различные уровни развертывания этого материала — от иллюстраций, поясняющих смысл различных типов множеств решений, и до использования геометрических представлений для выведения аналитических условий, определяющих каждый случай.

Второй, более высокий уровень в современном школьном курсе алгебры обычно не достигается.

Для этой темы характерна большая глубина изложения и богатство устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений и неравенств. К изучению этой темы учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений. В значительной мере именно на материале этой темы осуществляется синтез материала, относящегося к уравнениям.

Во всех современных школьных учебниках алгебры и термин, и объем понятия квадратного уравнения одинаковы. Понятие вводится посредством явного определения, что обязывает организовать работу по усвоению его формальных признаков. Это тем более необходимо, что соответствующие признаки существенно используются при построении теории квадратных уравнений, в частности при выводе формулы корней и в теореме Виета.

Вывод формулы корней квадратного уравнения может быть осуществлен несколькими различными способами: сразу для общего или сначала для приведенного квадратного уравнения, сведением к уравнению х 2 —а=0 или к уравнению х 2 =а. Но в любом случае приходится использовать выделение полного квадрата в трехчлене ах 2 + b х+с, сводящее уравнение к двучленному. Выделение последовательности шагов, приводящих к решению квадратных уравнений, проводится сначала на конкретных примерах.

Необходимым этапом при выводе формулы корней квадратного уравнения служит исследование, выявляющее три возможных случая: отсутствие корней, наличие одного или двух корней. При этом вводится дискриминант уравнения. В результате исследования формулируется вывод: «Если дискриминант квадратного уравнения ах 2 + b х+с = 0 отрицателен, то оно не имеет действительных корней; если дискриминант равен нулю, то имеется один корень, равный b /2 a ; если дискриминант положителен, то уравнение имеет два корня ».

Учитывая этот вывод, решение конкретных квадратных уравнений проводится следующим образом: сначала вычисляется дискриминант, сравнивается с нулем, и если он неотрицателен, то применяются формулы для нахождения корней.

В ряде учебников, кроме основной формулы для корней квадратного уравнения ах 2 + b х + с = 0 , приводятся еще формулы корней уравнения x 2 +px+q=0 или x 2 +2px+q=0. Иногда использование этих формул упрощает вычисления, при наличии времени полезно их рассмотреть.

При изучении темы «Квадратные уравнения» рассматриваются и неполные квадратные уравнения. Обычно они изучаются перед выводом корней общего квадратного уравнения. Хотя различные виды неполных квадратных уравнении имеют разные алгоритмы решения, при изучении данной темы необходимо показать, что общая формула корней применима и для этих случаев.

Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами квадратного уравнения. Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное уравнение и его корни; в обратной — только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета. Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители.

Владение теорией квадратных уравнений существенно расширяет возможности решения уравнений методами, изучаемыми в курсе алгебры. Так, прямо сводятся к квадратным дробно-рациональные уравнения вида и биквадратные уравнения.

Еще один класс составляют алгебраические уравнения, которые разложением на множители могут быть сведены к линейному и квадратному уравнениям. Богатство и разнообразие приемов, имеющихся у учащихся, овладевших сведением различных уравнений к квадратным, служат необходимой предпосылкой перехода к завершающему этапу освоения методов решения уравнений. Особенно это сказывается на приложении к алгебраическому методу решения текстовых задач. Сюжеты их становятся более разнообразными, возрастает также сложность перевода на язык математики. В целом можно сказать, что освоение темы «Квадратные уравнения» поднимает учащихся на качественно новую ступень овладения содержанием школьной математики.

Глава II . Методико — педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 — 9 классах.

§ 1. Организация самостоятельной работы при обучения решению уравнений в 5 — 9 классах.

При традиционном способе преподавания учитель часто ставит ученика в положение объекта передаваемой ему извне информации. Такой постановкой образовательного процесса учитель искусственно задерживает развитие познавательной активности ученика, наносит ему большой вред в интеллектуальном и нравственном отношении.

«Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью», — эти слова Л. Н. Толстого должны стать смыслом работы учителя.

Самостоятельную деятельность учащихся можно и нужно организовывать на различных уровнях: от воспроизведения действий по образцу и узнавания объектов путем их сравнения с известным образцом до составления модели и алгоритма действий в нестандартных ситуациях.

Учителю Необходимо учитывать, что при составлении заданий для самостоятельной работы степень сложности должна отвечать учебным возможностям детей.

Переход с одного уровня на другой должен осуществляться постепенно, только когда учитель будет убежден, что учащийся справится со следующим уровнем самостоятельности. Иначе в атмосфере спешки и нервозности у ученика возникают пробелы в знаниях.

Очень важно, чтобы содержание самостоятельной работы, форма и время ее выполнения отвечали основным целям обучения данной теме на данном этапе.

В то же время учителю нужно знать, что злоупотребление самостоятельной работой в учебном процессе также вредно, как и ее недооценка. Бывает так, что учитель включает в урок самостоятельную работу без особой необходимости, просто ради разнообразия, не продумав ее содержание и форму организации. Результаты бывают плачевны: или дети не готовы выполнить задание, или не хватило времени и т. п. А в результате — зря потрачено драгоценное время урока. Но если, составляя план урока, учитель тщательно продумал место и время самостоятельной работы; четко определил ее общее содержание, разбил задания по разным уровням сложности, то она сыграет свою положительную роль.

Поэтому учителю очень важно знать формы и виды самостоятельных работ, их место в процессе обучения.

Но нельзя забывать, что на успехи ученика огромное влияние оказывает настрой самого учителя. Здесь очень важен известный психологам эффект Резенталя — Якобсона. Эти исследователи провели следующий эксперимент: они давали учителям заведомо неправильную информацию о показателях умственного развития детей. Как выяснилось, последующие достижения учеников зависели от этой информации, т. е. от мнения учителя о возможностях ученика. Те дети, которые воспринимались учителем как более одаренные (хотя таковыми не являлись), показали большие сдвиги в учебе по сравнению с детьми, которых учитель считал менее одаренными.

Вот почему так важно умение учителя создать в классе доброжелательную атмосферу, особенно во время выполнения самостоятельных работ.

В зависимости от целей, которые ставятся перед самостоятельными работами, они могут быть:


источники:

http://multiurok.ru/files/samostoiatiel-naia-rabota-rieshieniie-uravnienii.html

http://infourok.ru/statya-na-temu-samostoyatelnaya-rabota-kak-sredstvo-obucheniya-resheniyu-uravneniy-v-klassah-1753152.html