Сформулируйте определение дифференциального уравнения с разделяющимися переменными

Методические рекомендации для преподавателей математики и студентов средних специальных учебных заведений по теме «Дифференциальные уравнения»

Разделы: Математика

I. Обыкновенные дифференциальные уравнения

1.1. Основные понятия и определения

Дифференциальным уравнением называется уравнение, связывающее между собой независимую переменную x, искомую функцию y и её производные или дифференциалы.

Символически дифференциальное уравнение записывается так:

Дифференциальное уравнение называется обыкновенным, если искомая функция зависит от одного независимого переменного.

Решением дифференциального уравнения называется такая функция , которая обращает это уравнение в тождество.

Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение

1. Рассмотрим дифференциальное уравнение первого порядка

Решением этого уравнения является функция y = 5 ln x. Действительно, , подставляя y’ в уравнение, получим – тождество.

А это и значит, что функция y = 5 ln x– есть решение этого дифференциального уравнения.

2. Рассмотрим дифференциальное уравнение второго порядка y» — 5y’ +6y = 0. Функция – решение этого уравнения.

Действительно, .

Подставляя эти выражения в уравнение, получим: , – тождество.

А это и значит, что функция – есть решение этого дифференциального уравнения.

Интегрированием дифференциальных уравнений называется процесс нахождения решений дифференциальных уравнений.

Общим решением дифференциального уравнения называется функция вида ,в которую входит столько независимых произвольных постоянных, каков порядок уравнения.

Частным решением дифференциального уравнения называется решение, полученное из общего решения при различных числовых значениях произвольных постоянных. Значения произвольных постоянных находится при определённых начальных значениях аргумента и функции.

График частного решения дифференциального уравнения называется интегральной кривой.

1.Найти частное решение дифференциального уравнения первого порядка

xdx + ydy = 0, если y = 4 при x = 3.

Решение. Интегрируя обе части уравнения, получим

Замечание. Произвольную постоянную С, полученную в результате интегрирования, можно представлять в любой форме, удобной для дальнейших преобразований. В данном случае, с учётом канонического уравнения окружности произвольную постоянную С удобно представить в виде .

— общее решение дифференциального уравнения.

Частное решение уравнения, удовлетворяющее начальным условиям y = 4 при x = 3 находится из общего подстановкой начальных условий в общее решение: 3 2 + 4 2 = C 2 ; C=5.

Подставляя С=5 в общее решение, получим x 2 +y 2 = 5 2 .

Это есть частное решение дифференциального уравнения, полученное из общего решения при заданных начальных условиях.

2. Найти общее решение дифференциального уравнения

Решением этого уравнения является всякая функция вида , где С – произвольная постоянная. Действительно, подставляя в уравнения , получим: , .

Следовательно, данное дифференциальное уравнение имеет бесконечное множество решений, так как при различных значениях постоянной С равенство определяет различные решения уравнения .

Например, непосредственной подстановкой можно убедиться, что функции являются решениями уравнения .

Задача, в которой требуется найти частное решение уравнения y’ = f(x,y) удовлетворяющее начальному условию y(x0) = y0, называется задачей Коши.

Решение уравнения y’ = f(x,y), удовлетворяющее начальному условию, y(x0) = y0, называется решением задачи Коши.

Решение задачи Коши имеет простой геометрический смысл. Действительно, согласно данным определениям, решить задачу Коши y’ = f(x,y) при условии y(x0) = y0,, означает найти интегральную кривую уравнения y’ = f(x,y) которая проходит через заданную точку M0(x0,y0).

II. Дифференциальные уравнения первого порядка

2.1. Основные понятия

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,y’) = 0.

В дифференциальное уравнение первого порядка входит первая производная и не входят производные более высокого порядка.

Уравнение y’ = f(x,y) называется уравнением первого порядка, разрешённым относительно производной.

Общим решением дифференциального уравнения первого порядка называется функция вида , которая содержит одну произвольную постоянную.

Пример. Рассмотрим дифференциальное уравнение первого порядка .

Решением этого уравнения является функция .

Действительно, заменив в данном уравнении, его значением, получим

то есть 3x=3x

Следовательно, функция является общим решением уравнения при любом постоянном С.

Найти частное решение данного уравнения, удовлетворяющее начальному условию y(1)=1 Подставляя начальные условия x = 1, y =1 в общее решение уравнения , получим откуда C = 0.

Таким образом, частное решение получим из общего подставив в это уравнение, полученное значение C = 0 – частное решение.

2.2. Дифференциальные уравнения с разделяющимися переменными

Дифференциальным уравнением с разделяющимися переменными называется уравнение вида: y’=f(x)g(y) или через дифференциалы , где f(x) и g(y)– заданные функции.

Для тех y, для которых , уравнение y’=f(x)g(y) равносильно уравнению, в котором переменная y присутствует лишь в левой части, а переменная x- лишь в правой части. Говорят, «в уравнении y’=f(x)g(y разделим переменные».

Уравнение вида называется уравнением с разделёнными переменными.

Проинтегрировав обе части уравнения по x, получим G(y) = F(x) + C– общее решение уравнения, где G(y) и F(x) – некоторые первообразные соответственно функций и f(x), C произвольная постоянная.

Алгоритм решения дифференциального уравнения первого порядка с разделяющимися переменными

  1. Производную функции переписать через её дифференциалы
  2. Разделить переменные.
  3. Проинтегрировать обе части равенства, найти общее решение.
  4. Если заданы начальные условия, найти частное решение.

Решить уравнение y’ = xy

Решение. Производную функции y’ заменим на

разделим переменные

проинтегрируем обе части равенства:

Ответ:

Найти частное решение уравнения

Это—уравнение с разделенными переменными. Представим его в дифференциалах. Для этого перепишем данное уравнение в виде Отсюда

Интегрируя обе части последнего равенства, найдем

Подставив начальные значения x0 = 1, y0 = 3 найдем С 9=1-1+C, т.е. С = 9.

Следовательно, искомый частный интеграл будет или

Составить уравнение кривой, проходящей через точку M(2;-3) и имеющей касательную с угловым коэффициентом

Решение. Согласно условию

Это уравнение с разделяющимися переменными. Разделив переменные, получим:

Проинтегрировав обе части уравнения, получим:

Используя начальные условия, x = 2 и y = — 3 найдем C:

Следовательно, искомое уравнение имеет вид

2.3. Линейные дифференциальные уравнения первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида y’ = f(x)y + g(x)

где f(x) и g(x) — некоторые заданные функции.

Если g(x)=0 то линейное дифференциальное уравнение называется однородным и имеет вид: y’ = f(x)y

Если то уравнение y’ = f(x)y + g(x) называется неоднородным.

Общее решение линейного однородного дифференциального уравнения y’ = f(x)y задается формулой: где С – произвольная постоянная.

В частности, если С =0, то решением является y = 0 Если линейное однородное уравнение имеет вид y’ = ky где k — некоторая постоянная, то его общее решение имеет вид: .

Общее решение линейного неоднородного дифференциального уравнения y’ = f(x)y + g(x) задается формулой ,

т.е. равно сумме общего решения соответствующего линейного однородного уравнения и частного решения данного уравнения.

Для линейного неоднородного уравнения вида y’ = kx + b,

где k и b— некоторые числа и частным решением будет являться постоянная функция . Поэтому общее решение имеет вид .

Пример. Решить уравнение y’ + 2y +3 = 0

Решение. Представим уравнение в виде y’ = -2y — 3 где k = -2, b= -3 Общее решение задается формулой .

Следовательно, где С – произвольная постоянная.

Ответ:

2.4. Решение линейных дифференциальных уравнений первого порядка методом Бернулли

Нахождение общего решения линейного дифференциального уравнения первого порядка y’ = f(x)y + g(x) сводится к решению двух дифференциальных уравнений с разделенными переменными с помощью подстановки y=uv, где u и v — неизвестные функции от x. Этот метод решения называется методом Бернулли.

Алгоритм решения линейного дифференциального уравнения первого порядка

1. Ввести подстановку y=uv.

2. Продифференцировать это равенство y’ = u’v + uv’

3. Подставить y и y’ в данное уравнение: u’v + uv’ = f(x)uv + g(x) или u’v + uv’ + f(x)uv = g(x).

4. Сгруппировать члены уравнения так, чтобы u вынести за скобки:

5. Из скобки, приравняв ее к нулю, найти функцию

Это уравнение с разделяющимися переменными:

Разделим переменные и получим:

Откуда . .

6. Подставить полученное значение v в уравнение (из п.4):

и найти функцию Это уравнение с разделяющимися переменными:

7. Записать общее решение в виде: , т.е. .

Найти частное решение уравнения y’ = -2y +3 = 0 если y =1 при x = 0

Решение. Решим его с помощью подстановки y=uv, .y’ = u’v + uv’

Подставляя y и y’ в данное уравнение, получим

Сгруппировав второе и третье слагаемое левой части уравнения, вынесем общий множитель u за скобки

Выражение в скобках приравниваем к нулю и, решив полученное уравнение, найдем функцию v = v(x)

Получили уравнение с разделенными переменными. Проинтегрируем обе части этого уравнения: Найдем функцию v:

Подставим полученное значение v в уравнение Получим:

Это уравнение с разделенными переменными. Проинтегрируем обе части уравнения: Найдем функцию u = u(x,c) Найдем общее решение: Найдем частное решение уравнения, удовлетворяющее начальным условиям y = 1 при x = 0:

Ответ:

III. Дифференциальные уравнения высших порядков

3.1. Основные понятия и определения

Дифференциальным уравнением второго порядка называется уравнение, содержащее производные не выше второго порядка. В общем случае дифференциальное уравнение второго порядка записывается в виде: F(x,y,y’,y») = 0

Общим решением дифференциального уравнения второго порядка называется функция вида , в которую входят две произвольные постоянные C1 и C2.

Частным решением дифференциального уравнения второго порядка называется решение, полученное из общего при некоторых значениях произвольных постоянных C1 и C2.

3.2. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида y» + py’ +qy = 0, где pи q— постоянные величины.

Алгоритм решения однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

1. Записать дифференциальное уравнение в виде: y» + py’ +qy = 0.

2. Составить его характеристическое уравнение, обозначив через r 2 , y’ через r, yчерез 1: r 2 + pr +q = 0

3.Вычислить дискриминант D = p 2 -4q и найти корни характеристического уравнения; при этом если:

а) D > 0; следовательно, характеристическое уравнение имеет два различных действительных корня . Общее решение дифференциального уравнения выражается в виде , где C1 и C2 — произвольные постоянные.

б) D = 0; следовательно, характеристическое уравнение имеет равные действительные корни . Общее решение дифференциального уравнения выражается в виде

Общее решение

Дифференцируя общее решение, получим

Составим систему из двух уравнений

Подставим вместо ,и заданные начальные условия:

Таким образом, искомым частным решением является функция

.

2. Найти частное решение уравнения

1.

1.

2. а)

2. а)

б)

б)

в)

в)

г)

г)

Дифференциальные уравнения с разделяющимися переменными

В целом ряде обыкновенных ДУ 1 -го порядка существуют такие, в которых переменные х и у можно разнести в правую и левую части записи уравнения. Переменные могут быть уже разделены, как это можно видеть в уравнении f ( y ) d y = g ( x ) d x . Разделить переменные в ОДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x можно путем проведения преобразований. Чаще всего для получения уравнений с разделяющимися переменными применяется метод введения новых переменных.

В этой теме мы подробно разберем метод решения уравнений с разделенными переменными. Рассмотрим уравнения с разделяющимися переменными и ДУ, которые можно свести к уравнениям с разделяющимися переменными. В разделе мы разобрали большое количество задач по теме с подробным разбором решения.

Для того, чтобы облегчить себе усвоение темы, рекомендуем ознакомиться с информацией, которая размещена на странице «Основные определения и понятия теории дифференциальных уравнений».

Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x

Уравнениями с разделенными переменными называют ДУ вида f ( y ) d y = g ( x ) d x . Как следует из названия, переменные, входящие в состав выражения, находятся по обе стороны от знака равенства.

Договоримся, что функции f ( y ) и g ( x ) мы будем считать непрерывными.

Для уравнений с разделенными переменными общий интеграл будет иметь вид ∫ f ( y ) d y = ∫ g ( x ) d x . Общее решение ДУ в виде неявно заданной функции Ф ( x , y ) = 0 мы можем получить при условии, что интегралы из приведенного равенства выражаются в элементарных функциях. В ряде случаев выразить функцию у получается и в явном виде.

Найдите общее решение дифференциального уравнения с разделенными переменными y 2 3 d y = sin x d x .

Проинтегрируем обе части равенства:

∫ y 2 3 d y = ∫ sin x d x

Это, по сути, и есть общее решение данного ДУ. Фактически, мы свели задачу нахождения общего решения ДУ к задаче нахождения неопределенных интегралов.

Теперь мы можем использовать таблицу первообразных для того, чтобы взять интегралы, которые выражаются в элементарных функциях:

∫ y 2 3 d y = 3 5 y 5 3 + C 1 ∫ sin x d x = — cos x + C 2 ⇒ ∫ y 2 3 d y = ∫ sin x d x ⇔ 3 5 y 3 5 + C 1 = — cos x + C 2
где С 1 и С 2 – произвольные постоянные.

Функция 3 5 y 3 5 + C 1 = — cos x + C 2 задана неявно. Она является общим решением исходного дифференциального уравнения с разделенными переменными. Мы получили ответ и можем не продолжать решение. Однако в рассматриваемом примере искомую функцию можно выразить через аргумент х явно.

3 5 y 5 3 + C 1 ⇒ y = — 5 3 cos x + C 3 5 , где C = 5 3 ( C 2 — C 1 )

Общим решением данного ДУ является функция y = — 5 3 cos x + C 3 5

Ответ:

Мы можем записать ответ несколькими способами: ∫ y 2 3 d y = ∫ sin x d x или 3 5 y 5 3 + C 1 = — cos x + C 2 , или y = — 5 3 cos x + C 3 5

Всегда стоит давать понять преподавателю, что вы наряду с навыками решения дифференциальных уравнений также располагаете умением преобразовывать выражения и брать интегралы. Сделать это просто. Достаточно дать окончательный ответ в виде явной функции или неявно заданной функции Ф ( x , y ) = 0 .

Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x

y ‘ = d y d x в тех случаях, когда у является функцией аргумента х .

В ДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x ) d x мы можем провести преобразования таким образом, чтобы разделить переменные. Этот вид ДУ носит название ДУ с разделяющимися переменными. Запись соответствующего ДУ с разделенными переменными будет иметь вид f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x .

Разделяя переменные, необходимо проводить все преобразования внимательно для того, чтобы избежать ошибок. Полученное и исходное уравнения должны быть эквивалентны друг другу. В качестве проверки можно использовать условие, по которому f 2 ( y ) и g 1 ( x ) не должны обращаться в ноль на интервале интегрирования. Если это условие не выполняется, то есть вероятность, что ы потеряем часть решений.

Найти все решения дифференциального уравнения y ‘ = y · ( x 2 + e x ) .

Мы можем разделить х и у , следовательно, мы имеем дело с ДУ с разделяющимися переменными.

y ‘ = y · ( x 2 + e x ) ⇔ d y d x = y · ( x 2 + e x ) ⇔ d y y = ( x 2 + e x ) d x п р и y ≠ 0

При у = 0 исходное уравнение обращается в тождество: 0 ‘ = 0 · ( x 2 + e x ) ⇔ 0 ≡ 0 . Это позволят нам утверждать, что у = 0 является решением ДУ. Это решение мы могли не учесть при проведении преобразований.

Выполним интегрирование ДУ с разделенными переменными d y y = ( x 2 + e x ) d x :
∫ d y y = ∫ ( x 2 + e x ) d x ∫ d y y = ln y + C 1 ∫ ( x 2 + e x ) d x = x 3 3 + e x + C 2 ⇒ ln y + C 1 = x 3 3 + e x + C 2 ⇒ ln y = x 3 3 + e x + C

Проводя преобразование, мы выполнили замену C 2 — C 1 на С . Решение ДУ имеет вид неявно заданной функции ln y = x 3 3 + e x + C . Эту функцию мы в состоянии выразить явно. Для этого проведем потенцирование полученного равенства:

ln y = x 3 3 + e x + C ⇔ e ln y = e x 3 3 + e x + C ⇔ y = e x 3 3 + e x + C

Ответ: y = e x 3 3 + e x + C , y = 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0

Для того, чтобы привести обыкновенное ДУ 1 -го порядка y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0 , к уравнению с разделяющимися переменными, необходимо ввести новую переменную z = a x + b y , где z представляет собой функцию аргумента x .

z = a x + b y ⇔ y = 1 b ( z — a x ) ⇒ y ‘ = 1 b ( z ‘ — a ) f ( a x + b y ) = f ( z )

Проводим подстановку и необходимые преобразования:

y ‘ = f ( a x + b y ) ⇔ 1 b ( z ‘ — a ) = f ( z ) ⇔ z ‘ = b f ( z ) + a ⇔ d z b f ( z ) + a = d x , b f ( z ) + a ≠ 0

Найдите общее решение дифференциального уравнения y ‘ = 1 ln ( 2 x + y ) — 2 и частное решение, удовлетворяющее начальному условию y ( 0 ) = e .

Введем переменную z = 2 x + y , получаем:

y = z — 2 x ⇒ y ‘ = z ‘ — 2 ln ( 2 x + y ) = ln z

Результат, который мы получили, подставляем в исходное выражение, проводим преобразование его в ДУ с разделяющимися переменными:

y ‘ = 1 ln ( 2 x + y ) — 2 ⇔ z ‘ — 2 = 1 ln z — 2 ⇔ d z d x = 1 ln z

Проинтегрируем обе части уравнения после разделения переменных:

d z d z = 1 ln z ⇔ ln z d z = d x ⇔ ∫ ln z d z = ∫ d x

Применим метод интегрирования по частям для нахождения интеграла, расположенного в левой части записи уравнения. Интеграл правой части посмотрим в таблице.

∫ ln z d z = u = ln z , d v = d z d u = d z z , v = z = z · ln z — ∫ z d z z = = z · ln z — z + C 1 = z · ( ln z — 1 ) + C 1 ∫ d x = x + C 2

Мы можем утверждать, что z · ( ln z — 1 ) + C 1 = x + C 2 . Теперь, если мы примем, что C = C 2 — C 1 и проведем обратную замену z = 2 x + y , то получим общее решение дифференциального уравнения в виде неявно заданной функции:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x + C

Теперь примемся за нахождение частного решения, которое должно удовлетворять начальному условию y ( 0 ) = e . Проведем подстановку x = 0 и y ( 0 ) = e в общее решение ДУ и найдем значение константы С .

( 2 · 0 + e ) · ( ln ( 2 · 0 + e ) — 1 ) = 0 + C e · ( ln e — 1 ) = C C = 0

Получаем частное решение:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x

Так как в условии задачи не был задан интервал, на котором необходимо найти общее решение ДУ, то мы ищем такое решение, которое подходит для всех значений аргумента х , при которых исходное ДУ имеет смысл.

В нашем случае ДУ имеет смысл при ln ( 2 x + y ) ≠ 0 , 2 x + y > 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x

Мы можем свести ДУ вида y ‘ = f x y или y ‘ = f y x к дифференциальным уравнениям с разделяющимися переменными путем выполнения замены z = x y или z = y x , где z – функция аргумента x .

Если z = x y , то y = x z и по правилу дифференцирования дроби:

y ‘ = x y ‘ = x ‘ · z — x · z ‘ z 2 = z — x · z ‘ z 2

В этом случае уравнения примут вид z — x · z ‘ z 2 = f ( z ) или z — x · z ‘ z 2 = f 1 z

Если принять z = y x , то y = x ⋅ z и по правилу производной произведения y ‘ = ( x z ) ‘ = x ‘ z + x z ‘ = z + x z ‘ . В этом случае уравнения сведутся к z + x z ‘ = f 1 z или z + x z ‘ = f ( z ) .

Решите дифференциальное уравнение y ‘ = 1 e y x — y x + y x

Примем z = y x , тогда y = x z ⇒ y ‘ = z + x z ‘ . Подставим в исходное уравнение:

y ‘ = 1 e y x — y x + y x ⇔ z + x z ‘ = 1 e z — z + z ⇔ x · d z d x = 1 e z — z ⇔ ( e z — z ) d z = d x x

Проведем интегрирование уравнения с разделенными переменными, которое мы получили при проведении преобразований:

∫ ( e z — z ) d z = ∫ d x x e z — z 2 2 + C 1 = ln x + C 2 e z — z 2 2 = ln x + C , C = C 2 — C 1

Выполним обратную замену для того, чтобы получить общее решение исходного ДУ в виде функции, заданной неявно:

e y x — 1 2 · y 2 x 2 = ln x + C

А теперь остановимся на ДУ, которые имеют вид:

y ‘ = a 0 y n + a 1 y n — 1 x + a 2 y n — 2 x 2 + . . . + a n x n b 0 y n + b 1 y n — 1 x + b 2 y n — 2 x 2 + . . . + b n x n

Разделив числитель и знаменатель дроби, расположенной в правой части записи, на y n или x n , мы можем привести исходное ДУ в виду y ‘ = f x y или y ‘ = f y x

Найти общее решение дифференциального уравнения y ‘ = y 2 — x 2 2 x y

В этом уравнении х и у отличны от 0 . Это позволяет нам разделить числитель и знаменатель дроби, расположенной в правой части записи на x 2 :

y ‘ = y 2 — x 2 2 x y ⇒ y ‘ = y 2 x 2 — 1 2 y x

Если мы введем новую переменную z = y x , то получим y = x z ⇒ y ‘ = z + x z ‘ .

Теперь нам необходимо осуществить подстановку в исходное уравнение:

y ‘ = y 2 x 2 — 1 2 y x ⇔ z ‘ x + z = z 2 — 1 2 z ⇔ z ‘ x = z 2 — 1 2 z — z ⇔ z ‘ x = z 2 — 1 — 2 z 2 2 z ⇔ d z d x x = — z 2 + 1 2 z ⇔ 2 z d z z 2 + 1 = — d x x

Так мы пришли к ДУ с разделенными переменными. Найдем его решение:

∫ 2 z d z z 2 + 1 = — ∫ d x x ∫ 2 z d z z 2 + 1 = ∫ d ( z 2 + 1 ) z 2 + 1 = ln z 2 + 1 + C 1 — ∫ d x x = — ln x + C 2 ⇒ ln z 2 + 1 + C 1 = — ln x + C 2

Для этого уравнения мы можем получить решение в явном виде. Для этого примем — ln C = C 2 — C 1 и применим свойства логарифма:

ln z 2 + 1 = — ln x + C 2 — C 1 ⇔ ln z 2 + 1 = — ln x — ln C ⇔ ln z 2 + 1 = — ln C x ⇔ ln z 2 + 1 = ln C x — 1 ⇔ e ln z 2 + 1 = e ln 1 C x ⇔ z 2 + 1 = 1 C x ⇔ z ± 1 C x — 1

Теперь выполним обратную замену y = x ⋅ z и запишем общее решение исходного ДУ:

y = ± x · 1 C x — 1

В даном случае правильным будет и второй вариант решения. Мы можем использовать замену z = x y Рассмотрим этот вариант более подробно.

Выполним деление числителя и знаменателя дроби, расположенной в правой части записи уравнения на y 2 :

y ‘ = y 2 — x 2 2 x y ⇔ y ‘ = 1 — x 2 y 2 2 x y

Тогда y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Проведем подстановку в исходное уравнение для того, чтобы получить ДУ с разделяющимися переменными:

y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Разделив переменные, мы получаем равенство d z z ( z 2 + 1 ) = d x 2 x , которое можем проинтегрировать:

∫ d z z ( z 2 + 1 ) = ∫ d x 2 x

Если мы разложим подынтегральную функцию интеграла ∫ d z z ( z 2 + 1 ) на простейшие дроби, то получим:

∫ 1 z — z z 2 + 1 d z

Выполним интегрирование простейших дробей:

∫ 1 z — z z 2 + 1 d z = ∫ z d z z 2 + 1 = ∫ d t z — 1 2 ∫ d ( z 2 + 1 ) z 2 + 1 = = ln z — 1 2 ln z 2 + 1 + C 1 = ln z z 2 + 1 + C 1

Теперь найдем интеграл ∫ d x 2 x :

∫ d x 2 x = 1 2 ln x + C 2 = ln x + C 2

В итоге получаем ln z z 2 + 1 + C 1 = ln x + C 2 или ln z z 2 + 1 = ln C · x , где ln C = C 2 — C 1 .

Выполним обратную замену z = x y и необходимые преобразования, получим:

y = ± x · 1 C x — 1

Вариант решения, при котором мы выполняли замену z = x y , оказался более трудоемким, чем в случае замены z = y x . Этот вывод будет справедлив для большого количества уравнений вида y ‘ = f x y или y ‘ = f y x . Если выбранный вариант решения подобных уравнений оказывается трудоемким, можно вместо замены z = x y ввести переменную z = y x . На результат это никак не повлияет.

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R

Дифференциальные уравнения y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 можно свести к уравнениям y ‘ = f x y или y ‘ = f y x , следовательно, к уравнениям с разделяющимися переменными. Для этого находится ( x 0 , y 0 ) — решение системы двух линейных однородных уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 и вводятся новые переменные u = x — x 0 v = y — y 0 . После такой замены уравнение примет вид d v d u = a 1 u + b 1 v a 2 u + b 2 v .

Найти общее решение дифференциального уравнения y ‘ = x + 2 y — 3 x — 1 .

Составляем и решаем систему линейных уравнений:

x + 2 y — 3 = 0 x — 1 = 0 ⇔ x = 1 y = 1

Делаем замену переменных:

u = x — 1 v = y — 1 ⇔ x = u + 1 y = v + 1 ⇒ d x = d u d y = d v

После подстановки в исходное уравнение получаем d y d x = x + 2 y — 3 x — 1 ⇔ d v d u = u + 2 v u . После деления на u числителя и знаменателя правой части имеем d v d u = 1 + 2 v u .

Вводим новую переменную z = v u ⇒ v = z · y ⇒ d v d u = d z d u · u + z , тогда

d v d u = 1 + 2 v u ⇔ d z d u · u + z = 1 + 2 z ⇔ d z 1 + z = d u u ⇒ ∫ d z 1 + z = ∫ d u u ⇔ ln 1 + z + C 1 = ln u + C 2 ⇒ ln 1 + z = ln u + ln C , ln C = C 2 — C 1 ln 1 + z = ln C · u 1 + z = C · u ⇔ z = C · u — 1 ⇔ v u = C · u — 1 ⇔ v = u · ( C · u — 1 )

Возвращаемся к исходным переменным, производя обратную замену u = x — 1 v = y — 1 :
v = u · ( C · u — 1 ) ⇔ y — 1 = ( x — 1 ) · ( C · ( x — 1 ) — 1 ) ⇔ y = C x 2 — ( 2 C + 1 ) · x + C + 2

Это есть общее решение дифференциального уравнения.

Дифференциальные уравнения с разделяющимися переменными и их интегрирование

п.1. Понятие дифференциального уравнения с разделяющимися переменными

Например:
\(y»+y’-4=5cos⁡x\) — ДУ второго порядка первой степени
\((y’)^3+5y^2=19\) – ДУ первого порядка третьей степени
\(\sqrt=y’x\) — ДУ первого порядка первой степени

Самыми простыми для решения будут такие уравнения, у которых можно разделить переменные, т.е. собрать всё, что связано с функцией \(y\), по одну сторону знака равенства, и всё, что связано с независимой переменной \(x\), — по другую сторону.

Например:
Уравнение \(\sqrt=y’x\) является уравнением с разделяющимися переменными, т.к. $$ y’=\frac<\sqrt>=g(x)\cdot h(y),\ \ \text<где>\ g(x)=\frac1x,\ h(y)=\sqrt $$

Алгоритм решения ДУ с разделяющимися переменными
На входе: уравнение первого порядка \(y’=f(x,y)\), для которого \(f(x,y)=g(x)\cdot h(y)\)
Шаг 1. Записать производную в форме Лейбница \(y’=\frac\)
Шаг 2. Преобразовать уравнение
$$ \frac=g(x)\cdot h(y)\Rightarrow \frac=g(x)dx $$ Шаг 3. Проинтегрировать левую и правую части уравнения: $$ \int\frac=\int g(x)dx+C $$ Шаг 4. Результат интегрирования \(H(y)=G(x)+C\) — общее решение данного уравнения.
На выходе: выражение \(H(y)=G(x)+C\)

Например:
Решим уравнение \(\sqrt=y’x\)
1) Пусть \(x\ne 0\). Тогда: $$ y’=\frac<\sqrt>\Rightarrow\frac=\frac<\sqrt>\Rightarrow\frac<\sqrt>=\frac $$ Находим интегралы (константу запишем в конце): $$ \int\frac<\sqrt>=\frac<(y+1)^<\frac32>><\frac32>=\frac23\sqrt<(y+1)^3>,\ \ \int\frac=\ln|x| $$ Получаем общее решение: $$ \frac23\sqrt<(y+1)^3>=\ln|x|+C,\ x\ne 0 $$ 2) Пусть \(x=0\). Тогда по условию: \(\sqrt=0\Rightarrow y=-1\)
Точка (0;-1) – особое решение данного уравнения.

п.2. Задача Коши

Например:
Найдем решение задачи Коши для уравнения \(\sqrt=y’x\) при начальном условии \(y(1)=3\).
Общее решение нами уже найдено: \(\frac23\sqrt<(y+1)^3>=\ln|x|+C\) — этим выражением задано бесконечное множество кривых. Решить задачу Коши означает найти единственную кривую, проходящую через точку (1;3), т.е. конкретное значение C для заданных начальных условий.
Подставляем \(x=1\) и \(y=3:\frac23\sqrt<(3+1)^3>=\underbrace<\ln 1>_<=0>+C\Rightarrow C=\frac23\sqrt<4^3>=\frac<16><3>\)
Решение задачи Коши: \(\frac23\sqrt<(y+1)^3>=\ln|x|+\frac<16><3>\)
Выразим y в явном виде, что всегда приходится делать на практике: $$ \sqrt<(y+1)^3>=\frac32\ln|x|+8\Rightarrow y+1=\left(\frac32\ln|x|+8\right)^<\frac23>\Rightarrow y=\left(\frac32\ln|x|+8\right)^<\frac23>-1 $$ Ограничения ОДЗ: \( \begin y\geq -1\\ \frac32\ln|x|+8\geq 0 \end \Rightarrow |x|\geq -\frac<16><3>\Rightarrow |x|\geq e^<-\frac<16><3>> \)
Начальная точка \(x=1\gt e^<-\frac<16><3>>\), требования ОДЗ выполняются.
Т.к. \(x=1\gt 0\) в решении также можно убрать модуль.

п.3. Закон радиоактивного распада

В многочисленных экспериментах по определению радиоактивности вещества был установлен следующий факт:

Число распадов ΔN, которые произошли за интервал времени Δt, пропорционально числу атомов N в образце.

Перейдем к бесконечно малым \(dN\) и \(dt\) и запишем соответствующее этому факту дифференциальное уравнение: $$ \frac

=-\lambda N $$ где знак «-» учитывает уменьшение числа атомов N со временем.
Полученное ДУ является уравнением с разделяющимися переменными.
Найдем его общее решение: $$ \frac=-\lambda dt\Rightarrow\int\frac=-\lambda\int dt\Rightarrow \ln N=-\lambda t+C $$ Пусть в начальный момент времени \(t=0\) в образце было \(N_0\) атомов.
Решаем задачу Коши, находим \(C:\ \ln N_0=-\lambda\cdot 0+C\Rightarrow C=\ln N_0\)
Подставляем найденное C в общее решение. Получаем: $$ \ln N=-\lambda N+\ln N_0\Rightarrow \ln N-\ln N_0=-\lambda t\Rightarrow\ln\frac=-\lambda t\Rightarrow\frac=e^ <-\lambda t>$$

п.4. Зарядка конденсатора

Соберем цепь, состоящую из конденсатора C, резистора R, источника ЭДС E и ключа K.
Пусть в начальный момент времени конденсатор разряжен, напряжение на обкладках: \(U(0)=0\)
Замкнем ключ и начнем зарядку конденсатора.

По закону Ома для замкнутой цепи можем записать: $$ I(R+r_0)+U=\varepsilon $$ где \(I\) — ток в цепи, \(I(R+r_0)\) – падение напряжения на резисторе и источнике, \(U\) — напряжение на конденсаторе, \(\varepsilon\) – ЭДС источника.
Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ C\frac
\cdot (R+r_0)=\varepsilon-U $$ Получили ДУ с разделяющимися переменными: $$ \frac<\varepsilon-U>=\frac
$$ Интегрируем (не забываем про минус перед U в знаменателе): $$ \int\frac<\varepsilon-U>=-\ln(\varepsilon-U),\ \ \int\frac = \frac $$ Общее решение: $$ \ln(\varepsilon-U)=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln(\varepsilon-0)=-\frac<0>+B\Rightarrow B=\ln\varepsilon $$ Решение задачи Коши: \begin \ln(\varepsilon-U)=-\frac+\ln\varepsilon\\ \ln(\varepsilon-U)-\ln\varepsilon=-\frac\\ \ln\frac<\varepsilon-U><\varepsilon>=-\frac\Rightarrow\frac<\varepsilon-U><\varepsilon>=e^<-\frac>\Rightarrow \varepsilon e^<-\frac> \end

Если внутренне сопротивление источника пренебрежимо мало по сравнению с внешним сопротивлением, \(r_0\lt\lt R\), то получаем: $$ u(t)=\varepsilon\left(1-e^<-\frac>\right) $$ При \(t\rightarrow +\infty\) показатель экспоненты стремится к (\(-\infty\)), а сама экспонента стремится к нулю: \(U(t\rightarrow +\infty)=\varepsilon(1-e^<-\infty>)\), т.е. напряжение на обкладках конденсатора стремится к значению ЭДС источника.

Например:
При \(\varepsilon=5В,\ RC=0,01\) с график зарядки конденсатора имеет вид:

п.5. Примеры

Пример 1. Решите уравнение:
a) \(y’=e^\) \begin \frac=e^x\cdot e^y\Rightarrow e^<-y>dy=e^x dx\Rightarrow\int e^<-y>dy=\int e^x dx\Rightarrow -e^<-y>=e^x+C \end \(e^<-y>=-e^x+C\) (на константу, определенную от минус до плюс бесконечности, перемена знака не влияет).
\(-y=\ln⁡(-e^x+C) \)
\(y=-\ln⁡(C-e^x)\)
Ответ: \(y=\ln⁡(C-e^x)\)

б) \(xy+(x+1)y’=0\) \begin (x+1)y’=-xy\Rightarrow\frac=-\frac\Rightarrow\frac=-\fracdx\\ \int\frac=\ln|y|\\ -\int\fracdx=-\int\frac<(x+1)-1>dx=-\int\left(1-\frac<1>\right)dx=-x+\ln|x+1| \end Получаем: \(\ln|y|=-x+\ln|x+1|\)
Запишем константу немного по-другому, как \(\ln ⁡C\). Это удобно для потенцирования: \begin \ln|y|-x+\ln|x+1|+\ln C\\ \ln|y|-\ln C=-x+\ln|x+1|\\ \ln\frac<|y|>=-x+\ln|x+1|\\ e^<\ln\frac<|y|>>=e^<-x+\ln|x+1|>\\ \frac yC=e^<-x>\cdot (x+1)\\ y=Ce^<-x>(x+1) \end При преобразованиях мы делили на \((x+1)\) и \(y\), считая, что \(x\ne -1\) и \(y\ne 0\). Если подставить \(x=-1\) в решение, получим \(y=0\), т.е. эта точка не является особой, она входит в общее решение.
Ответ: \(y=Ce^<-x>(x+1)\)

Пример 2*. Найдите решение задачи Коши:
a) \(\frac+e^y=0,\ y(1)=0\) \begin \frac=-e^y\Rightarrow\frac=-x^2e^y\Rightarrow e^<-y>dy=-x^2dx\\ \int e^<-y>dy=-e^<-y>,\ \ -\int x^2dx=-\frac <3>\end Получаем: \begin -e^<-y>=-\frac<3>+C\Rightarrow e^<-y>=\frac<3>+C\Rightarrow -y=\ln\left|\frac<3>+C\right|\Rightarrow y=-\ln\left|\frac<3>+C\right| \end Общее решение: \(y=-\ln\left|\frac<3>+C\right|\)
Решаем задачу Коши. Подставляем начальные условия: $$ 0-\ln\left|\frac13+C\right|\Rightarrow\frac13+C=1\Rightarrow C=\frac23 $$ Решение задачи Коши: \(y=-\ln\left|\frac<3>\right|\)
Ответ: \(y=-\ln\left|\frac<3>\right|\)

б) \(x^2(y^2+5)+y^2(x^2+r)y’=0,\ y(0)=\sqrt<5>\) \begin y^2(x^2+5)y’=-x^2(y^2+5)\\ y’=\frac=-\frac\Rightarrow \fracdy=-\fracdx \end Используем табличный интеграл: \(\int\frac=\frac1a arctg\frac xa+C\) \begin \int\fracdy=\int\frac<(y^2+5)-5>dy=\int\left(1-\frac<5>\right)dy=y-5\cdot\frac<1><\sqrt<5>>arctg\frac<\sqrt<5>>=\\ =y-\sqrt<5>arctg\frac<\sqrt<5>> \end Аналогично: \(-\int\fracdx=-x+\sqrt<5>arctg\frac<\sqrt<5>>\)
Общее решение: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+C\)
Решаем задачу Коши. Подставляем начальные условия: $$ \sqrt<5>-\sqrt<5>arctg1=-0+0+C\Rightarrow C=\sqrt<5>-\frac<\pi\sqrt<5>><4>=\sqrt<5>\left(1-\frac\pi 4\right) $$ Решение задачи Коши: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)
Ответ: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)

Пример 3. Найдите массу радиоактивного вещества спустя время, равное четырем периодам полураспада, если начальная масса составляла 64 г.
При радиоактивном распаде атомы одного элемента превращаются в атомы другого, поэтому для массы вещества справедлив тот же закон, что и для количества атомов этого вещества: $$ m(t)=m_0 e^ <-\lambda t>$$ Период полураспада – это время, за которое масса уменьшается в 2 раза: $$ \frac\right)>=\frac12 $$ За время, равное 4 периодам полураспада, масса уменьшится: $$ \frac\right)>=\left(\frac12\right)^4=\frac<1> <16>$$ в 16 раз.
Получаем: $$ m\left(4T_<\frac12>\right)=\frac<16>,\ \ m\left(4T_<\frac12>\right)=\frac<64><16>=4\ \text <(г)>$$ Ответ: 4 г

Пример 4. Выведите зависимость \(U(t)\) на обкладках конденсатора при его разрядке в RC-цепи.

Разрядка конденсатора происходит в цепи без источника ЭДС.
Пусть в начальный момент заряд на обкладках \(U(0)=U_0.\)
Замкнем ключ и начнем разрядку конденсатора.

По закону Ома для замкнутой цепи: $$ IR+U=0 $$ Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ RC\frac
=-U $$ Получили ДУ с разделяющимися переменными: $$ \frac=-\frac
$$ Интегрируем: $$ \int\frac=\ln U,\ \ \int
=\frac $$ Общее решение: $$ \ln U=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln U_0=-\frac<0>+B\Rightarrow B=\ln U_0 $$ Решение задачи Коши: \begin \ln U=-\frac+\ln U_0\Rightarrow\ln U-\ln U_0=-\frac\Rightarrow \ln\frac=-\frac\\ \frac=e^<-\frac> \end
Изменение напряжение на обкладках конденсатора при разрядке: $$ U(t)=U_0 e^<-\frac> $$

Например, \(при U_0=5В,\ RC=0,01 с\) график разрядки конденсатора имеет вид:


источники:

http://zaochnik.com/spravochnik/matematika/differentsialnye-uravnenija/differentsialnye-uravnenija-s-razdeljajuschimisja/

http://reshator.com/sprav/algebra/10-11-klass/differencialnye-uravneniya-s-razdelyayushchimisya-peremennymi-i-ih-integrirovanie/