Схема модели решения дифференциальных уравнений

МОДЕЛИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Дата добавления: 2015-06-12 ; просмотров: 8130 ; Нарушение авторских прав

Цель работы: освоение методики моделирования линейных дифференциальных уравнений в системе MATLAB и SIMULINK.

I. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1. Линейное дифференциальное уравнение.

Многие физические процессы, такие как колебания маятника, движение стрелки гальванометра, изменение высоты при посадке самолета, процессы в электрическом колебательном контуре могут быть описаны линейным однородным дифференциальным уравнением второго порядка

. (1)

Здесь а0, а1 – постоянные коэффициенты, определяющие характер процесса, точкой обозначается производная по времени. Амплитуда переменной x(t) зависит от начальных условий, например, от начального отклонения x0 маятника и его начальной скорости .

Вид теоретического решения дифференциального уравнения (1) определяется корнями его характеристического полинома

Если корни вещественные и различные р1 = a1`, р2 = a2`, то решение имеет вид

.

Если корни комплексные р1,2 =a ± ib , то решение имеет вид

Постоянные С1 и С2 находят, подставляя начальные условия в выражения для x(t) и при t = 0.

Пример 1. Дано дифференциальное уравнение

Его характеристическое уравнение p 2 + 2p + 2 = 0 имеет корни . Следовательно, общее решение будет следующим:

Дифференцируя, находим выражение для :

При t = 0 с учетом начальных условий получаем C1 = 2, С2 = 1. Следовательно,

Эффективным средством решения дифференциальных уравнений является численное моделирование в одном из математических пакетов (MATHCAD, MATLAB, SIMULINK и др.). График решения x(t) наблюдается на экране дисплея. В пакете MATLAB для этой цели имеются команды initial, lsim, ode23, ode45, dsolve. Дополнительныe возможности для пользователя предоставляет моделирование в SIMULINK.

1.2. Структурное моделирование линейных дифференциальных уравнений.

При структурном моделировании дифференциальных уравнений в пакете SIMULINK необходимо составить схему моделирования. На ней изображаются вычислительные блоки (усилители, сумматоры, интеграторы) и связи между ними. При проведении моделирования эта схема набирается на экране дисплея с помощью мыши или клавиатуры. По своему смыслу этот процесс аналогичен вводу программы, однако он более прост и нагляден. Подробная информация о реализации таких схем в SIMULINK имеется в разделе 3 учебного пособия Мироновского Л.А., Петровой К.Ю. «Введение в MATLAB» (ГУАП, 2006).

Рассмотрим методику составления схемы моделирования на примере однородного линейного дифференциального уравнения второго порядка

(2)

Для построения схемы моделирования воспользуемся методом понижения производной (методом Кельвина). В нем можно выделить четыре шага.

Шаг 1. Разрешаем исходное уравнение относительно старшей производной. В частности для уравнения (2) получаем .

Шаг 2. Полагаем старшую производную известной и выполняем ее последовательное интегрирование, получая все низшие производные и саму переменную х. В случае уравнения (2) для этого потребуется два последовательно включенных интегратора, на выходах которых получим сигналы и x.

Шаг 3. Формируем старшую производную, используя уравнение, полученное на первом шаге. В нашем примере для этого потребуется сумматор, складывающий сигналы и x, домноженные, соответственно, на коэффициенты –2 и –3.

Шаг 4. Объединяем схемы, полученные на втором и третьем шагах, в общую схему моделирования, указываем начальные условия интеграторов.

Применение этой методики для уравнения (2) приводит к схеме, показанной на рис. 1. Она содержит два интегратора, два масштабных усилителя и сумматор (обозначен кружочком).

Рис. 1. Схема моделирования уравнения (2)

Выходной сигнал схемы подается на имитатор осциллографа (блок Scope) или передается в рабочее пространство MATLAB (блоки OUT или ToWorkspase).

1.3. Системы линейных дифференциальных уравнений первого порядка.

Многие технические объекты можно описать системой n линейных дифференциальных уравнений первого порядка:

(3)

где и – входной сигнал; Y – вектор-столбец выходных переменных yi; b – вектор-столбец коэффициентов bi; A – квадратная матрица коэффициентов aij, .

Например, при моделировании летательного аппарата составляющими вектора Y могут быть текущие координаты самолета и скорости их изменения, тогда матрица A будет характеризовать динамику самолета, а слагаемое описывать управляющие воздействия, формируемые летчиком или автопилотом.

Один из методов решения системы дифференциальных уравнений основан на предварительном переходе от системы (3) к одному уравнению n-го порядка. Для этого из уравнений системы и из уравнений, полученных их дифференцированием, исключают все переменные кроме одной. Для нее получают одно дифференциальное уравнение. Решая его, определяют эту переменную, а остальные находят, по возможности, без интегрирования.

Пример 2. Дана система из двух дифференциальных уравнений

(4)

После дифференцирования первого уравнения получаем:

Чтобы исключить у2, вычтем отсюда удвоенное первое уравнение системы (4):

Мы получили линейное неоднородное дифференциальное уравнение второго порядка. Общее решение этого уравнения представляет собой сумму общего решения соответствующего однородного уравнения и частного решения . Так как корни характеристического уравнения р 2 – 2р–15 = 0 вещественны и различны: р1 = –3, р2 = 5, то решение имеет вид . Складывая его с частным решением , получаем Переменную y2 находим из соотношения

Для определения постоянных коэффициентов С1 и С2 используют начальные условия системы. Аналогичным образом этот метод применяется и для систем уравнений более высоких порядков

1.4. Моделирование системы линейных дифференциальных уравнений.

Если задача описывается системой дифференциальных уравнений пер­вого порядка, то для ее моделирования по методу понижения производной достаточно составить схемы для каждого уравнения отдельно. Например, схема моделирования системы уравнений (4) будет иметь вид, показанный на рис. 2.

Рис. 2. Схема моделирования системы уравнений (4)

Для наблюдения графиков сигналов у1(t), у2(t) в SIMULINK используется блок осциллографа SCOPE, а для наблюдения фазовой траектории у2 = f (у1) – блок осциллографа XY Graph.

2. ЗАДАНИЕ ПО РАБОТЕ И СОДЕРЖАНИЕ ОТЧЕТА

1. Теоретическое решение уравнения (1) при заданных значениях а0, а1 и начальных условиях x(0) = 5, . Таблицы расчетных данных, графики решений x(t), , график фазового портрета .

2. Схема моделирования заданного уравнения применительно к SIMULINK.

Теоретическое решение системы дифференциальных уравнений (3) для случая

(5)

Схема моделирования исходной системы уравнений применительно к SIMULINK.

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

  1. Набрать в SIMULINK схему моделирования уравнения (1), установить коэффициенты и начальные условия.
  2. Получить осциллограммы x(t), и , сравнить их с теоретическими графиками. Варьировать шаг и метод интегрирования.
  3. Набрать схему моделирования системы уравнений (3), установить коэффициенты и начальные условия (5).
  4. Получить осциллограммы у1(t), у2(t) и у2 = f(y1), сравнить их с теоретическими графиками. Варьировать шаг и метод интегрирования.
  5. Выполнить моделирование системы уравнений (3) в MATLAB, используя команду lsim. Cравнить графики, полученные в MATLAB и SIMULINK.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Решить следующие линейные дифференциальные уравнения:

а)

б)

  1. При каком значении а и при каких начальных условиях решение уравнения имеет вид:
  1. В чем заключается метод понижения производной? Пользуясь этим методом, составить схемы моделирования для всех вариантов п.1.
  2. Используя метод понижения производной, составить схемы моделирования следующих дифференциальных уравнений:

а) б)

в)

г)

  1. Схема моделирования представляет собой кольцо из трех интеграторов с единичными коэффициентами и одинаковыми начальными условиями. Найти моделируемое дифференциальное уравнение и его аналитическое решение.
  2. Как изменятся графики решения линейного однородного дифференциального уравнения при замене знаков всех начальных условий на противоположные?
  3. Описать процедуру перехода от системы дифференциальных уравнений к одному уравнению и обратную процедуру, рассмотрев случай n=3. Привести пример.
  4. Составить схему моделирования и найти решение системы линейных дифференциальных уравнений если матрица A имеет вид

ВАРИАНТЫ ЗАДАНИЙ ПО РАБОТЕ № 2

a10,10,10,50,10,10,50,10,10,50,10,10,6
a00,41,64,80,51,85,00,62,05,40,72,25,8
a11-1,0-1,0-1,0-1,0-1,0-1,0-1,0-0,9-0,9-0,9-0,9-0,9
a121,00,80,70,60,570,40.351,00,80,70,60,5
a22-2,0-1,8-1,7-1,6-1,5-1,4-1,3-1,9-1,7-1,6-1,5-1,4
a1 a00,1 0,80,3 2,46,00,9 8,80,1 0,90,3 2,60,7 6,41.1 9,00,2 1,00,3 2,80,8 6,80,6 5,8
a11-0,9-0,9-0,8-0,8-0,8-0,8-0,8-0,8-0,8-0,5-0,5-0,5
a120,40,31,00,80,70,60.50,40,31,00,80,7
a22-1,3-1,6-1,6-1,6-1,5-1,4-1,3-1,2-1,1-1,5-1,3-1,2

Ответы на контрольный вопрос 1а,б,в,г:

а. б.

в.

г.

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

и начальным условиям

Перед решением эта задача должна быть переписана в виде следующей СДУ

(1)

с начальными условиями

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций при заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений при t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Они могут быть векторами или скалярами. По умолчанию

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

(2)

(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке обозначим . Метод сходится в точке если при . Метод имеет р-й порядок точности, если , р > 0 при . Простейшая разностная схема для приближенного решения задачи (2),(3) есть

(4)

При имеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема в (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

(5)

а на этапе корректора (уточнения) — схема

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

(6),

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если при имеем явный метод Рунге—Кутта. Если при j>1 и то определяется неявно из уравнения:

(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры определяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов метода

(9)

С учётом(9) общее решение имеет вид:

(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

где – радиус вектор движущегося тела, – вектор скорости тела, – коэффициент сопротивления, вектор силы веса тела массы m, g – ускорение свободного падения.

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить , то в координатной форме мы имеем систему уравнений:

К системе следует добавить начальные условия: (h начальная высота), . Положим . Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Для модельной задачи положим . Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями

Введем обозначение для решения задачи Коши:

2. Решаем первые три однородные уравнения системы (11) с начальными условиями

Введем обозначение для решения задачи Коши:

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Введем обозначение для решения задачи Коши:

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:

где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

Решение дифференциального уравнения различными методами, доступными SIMULINK

Страницы работы

Содержание работы

Файл Модели\САМРаботы02\САМ06а.doc 5 стр. 200 Кбайт

1. Решение дифференциального уравнения различными методами, доступными SIMULINK.

Пусть, к примеру, требуется решить линейное дифференциальное уравнение второго порядка с правой частью

. (П7.01)

При использовании SIMULINK это уравнение можно решить несколькими способами.

Первый способ решения.

а) Разрабатывается блок-схема решения с использованием в качестве задатчиков коэффициентов уравнения модулей Gain раздела Linear. Начнем с того, что разрешим его относительно второй производной

(П7.02)

Полученное решение в модулях SIMULINK можно изобразить в виде

Рис. П7.1 Блок-схема решения с использованием в качестве задатчиков коэффициентов уравнения модулей Gain[1].

Для решения уравнения нами использованы 2 интегратора, 1 сумматор и 2 усилителя из раздела Linear библиотеки SIMULINK.

Вторая производная, согласно П7.02, должна получится путем вычитания из y0 равного 6/12, производных, умноженных на соответствующие коэффициенты.

Вид и значение параметров решения можно наблюдать на экране блока Scope раздела Sinks [siŋks — получатели] «y(t)».

b) Блок-схема решения с использованием в качестве задатчиков коэффициентов уравнения блоков Constant раздела Sources библиотеки SIMULINK и организации решения правой части уравнения в виде подсистемы.

Решение левой части уравнения по-прежнему представим в виде цепочки двух интеграторов, соединенных последовательно.

Для решения правой части уравнения соберем из модулей SIMULINK блок-схему и преобразуем ее в подсистему.

Рис. П7.2. Блок-схема решения правой части уравнения.

Составим блок-схему решения уравнения с использованием подсистемы.

Рис. П7.3. Блок-схема решения с использованием в качестве задатчиков коэффициентов уравнения модулей Constant[2].

Второй способ решения.

Используя SIMULINK, можно представить другой способ решения этого уравнения. Решение можно получить, используя модуль Transfer Fcn [‘trænsfə: Fkn] (Передаточное звено). В качестве входного сигнала будем использовать блок Constant раздела Sources [so:s — источники]

Рис. П7.4. Решение уравнения с использованием типовых структурных схем[3].

Вид и значение параметров решения можно наблюдать на экране блока Scope раздела Sinks [siŋks — получатели] «Интеграл».

Третий способ решения.

SIMULINK может предложить еще один способ решения данного дифференциального уравнения. Воспользовавшись методами структурных преобразований, данное уравнение можно представить в виде структурной схемы, состоящей из типовых модулей.

Рис. П7.5. Решение уравнения с использованием структурных преобразований[4].

Проведем исследование дифференциального уравнения 2 порядка

(П8.01)

методами фазовой плоскости, используя возможности SIMULINK.

Начнем с того, что разрешим уравнение относительно старшей производной.

(П8.02)

Решение левой части уравнения представим в виде цепочки из двух интеграторов соответственно настроенных.

Для решения правой части уравнения создадим 2 подсистемы. Одну для формирования значений коэффициентов уравнения, разрешенного относительно старшей производной и вторую для решения собственно правой части уравнения.

Рис. П8.1 Блок-схема формирования коэффициентов уравнения.

Рис. П8.2. Решатель правой части уравнения.

Решение дифференциального уравнения с учетом созданных подсистем будет иметь вид

Рис. П8.3. Блок-схема решения дифференциального уравнения[5].

Исследование фазового портрета.

Для наблюдения за фазовыми траекториями включим в качестве смотрового окна в блок-схему решения уравнения рис. П7.3 дополнительно модуль XY Graph из раздела Sinks библиотеки SIMULINK.

Сущность метода фазовой плоскости заключается в построении фазовых траекторий по дифференциальным уравнениям в системе координат: ось x — значение исследуемой величины u, ось y – скорость ее изменения du/dt. Процесс изменения траектории представляет собой движение изображающей точки на фазовой плоскости. Начальные условия определяют первоначальное положение изображающей точки на фазовой плоскости. Совокупность фазовых траекторий в плоскости (x, y) носит название фазовый портрет. Подробнее с методами фазовой плоскости можно ознакомиться по «Иващенко Н.Н. Автоматическое регулирование. Теория и элементы систем. Учебник для вузов. Изд. 4-е, перераб. и доп. М., «Машиностроение», 1978. Стр. 485-495».

Задачей нашего исследования является построение некоторых наиболее характерных фазовых портретов.

Рассмотрим следующие случаи характерные для уравнения 2 порядка:

[1] Программа расположена на файле «Мои документы\ПрогSIM\ПосГлава1\gla1_06 p7ris1»

[2] Программа расположена на файле «Мои документы\ПрогSIM\ПосГлава1\gla1_06 p7ris3»

[3] Программа расположена на файле «Мои документы\ПрогSIM\ПосГлава1\gla1_06 p7ris4»

[4] Программа расположена на файле «Мои документы\ПрогSIM\ПосГлава1\gla1_06 p7ris5»

[5] Программа расположена на файле «Мои документы\ПрогSIM\ПосГлава1\gla1_06 p8ris3»


источники:

http://habr.com/ru/post/418139/

http://vunivere.ru/work13449