Схема решения уравнения sinx a

Арксинус. Решение уравнения sin x = a

п.1. Понятие арксинуса

В записи \(y=sinx\) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если \(sinx=1\), то \(x=\frac\pi2+2\pi k,\ k\in\mathbb\); если \(sinx=0\), то \(x=\pi k,\ k\in\mathbb\) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: \(-\frac\pi2 \leq x\leq \frac\pi2\) (правая половина числовой окружности).

\(arcsin\frac12=\frac\pi6,\ \ arcsin\left(-\frac<\sqrt<3>><2>\right)=-\frac<\pi><3>\)
\(arcsin2\) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arcsinx


1. Область определения \(-1\leq x\leq1\) .
2. Функция ограничена сверху и снизу \(-\frac\pi2\leq arcsinx\leq \frac\pi2\) . Область значений \(y\in[-\frac\pi2; \frac\pi2]\)
3. Максимальное значение \(y_=\frac\pi2\) достигается в точке x=1
Минимальное значение \(y_=-\frac\pi2\) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: \(arcsin(-x)=-arcsin(x)\) .

п.3. Уравнение sin⁡x=a

Значениями арксинуса могут быть только углы от \(-\frac\pi2\) до \(\frac\pi2\) (от -90° до 90°). А как выразить другие углы через арксинус?

Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.

1) Решим уравнение \(sinx=\frac12\).
Найдем точку \(\frac12\) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\frac\pi6\) и \(\frac<5\pi><6>\) — это базовые корни.
Если взять корень справа \(\frac\pi6\) и прибавить к нему полный оборот \(\frac\pi6+2\pi=\frac<13\pi><6>\), синус полученного угла \(sin\frac<13\pi><6>=\frac12\), т.е. \(\frac<13\pi><6>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi6+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(\frac<5\pi><6>+2\pi k\).
Получаем ответ: \(x_1=\frac\pi6+2\pi k\) и \(x_2=\frac<5\pi><6>+2\pi k\)
Заметим, что \(arcsin\frac12=\frac\pi6\). Полученный ответ является записью вида
\(x_1=arcsin\frac12+2\pi k\) и \(x_2=\pi-arcsin\frac12+2\pi k\)
А т.к. арксинус для \(\frac12\) точно известен и равен \(\frac\pi6\), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.

2) Решим уравнение \(sinx=0,8\)

Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению правая точка – это угол, равный arcsin0,8.
Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
\(x_1=arcsin0,8+2\pi k,\)
\(x_2=\pi-arcsin0,8+2\pi k\)

Докажем, что семейства решений для корней справа и слева можно записать одним выражением \(x=(-1)^k arcsina+\pi k\).
Действительно, для чётных \(k=2n\) получаем: $$ x=(-1)^ <2n>arcsina+\pi \cdot 2n=arcsina+2\pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных \(k=2n+1\):
$$ x=(-1)^ <2n+1>arcsina+\pi \cdot (2n+1)=-arcsina+2\pi n +\pi=\pi-arcsina+2\pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+\pi k\Leftrightarrow \left[ \begin x=arcsina+2\pi n\\ x=\pi-arcsina+2\pi n \end \right. $$ Что и требовалось доказать.

Для примеров, решённых выше, можем записать: $$ 1) \left[ \begin x_1=\frac\pi6+2\pi k\\ x_2=\frac<5\pi><6>+2\pi k \end \right. \Leftrightarrow x=(-1)^k\frac\pi6 +\pi k $$
$$ 2) \left[ \begin x_1=arcsin0,8+2\pi k\\ x_2=\pi-arcsin0,8+2\pi k \end \right. \Leftrightarrow x=(-1)^karcsin0,8 +\pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.

п.4. Примеры

Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.

Для \(y=arcsinx\) область определения \(-1\leq x\leq 1\), область значений \(-\frac\pi2\leq y\leq \frac\pi2\).
Обратная функция \(y=sinx\) должна иметь ограниченную область определения \(-\frac\pi2\leq x\leq \frac\pi2\) и область значений \(-1\leq y\leq 1\).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) \(sin x=-1\)

\(x=-\frac\pi2+2\pi k\)
б) \(sin x=\frac<\sqrt<2>><2>\)

$$ \left[ \begin x_1=\frac\pi4+2\pi k\\ x_2=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^\frac<\pi> <4>+\pi k $$
в) \(sin x=0\)

\(x=\pi k\)
г) \(sin x=\sqrt<2>\)

\(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
Решений нет
д) \(sin x=0,7\)

\begin \left[ \begin x_1=arcsin(0,7)+2\pi k\\ x_2=\pi-arcsin(0,7)+2\pi k \end \right. \Leftrightarrow\\ \Leftrightarrow\ x=(-1)^k arcsin(0,7) +\pi k \end
e) \(sin x=-0,2\)

Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: \begin \left[ \begin x_1=-arcsin(0,2)+2\pi k\\ x_2=\pi+arcsin(0,7)+2\pi k \end \right. \Leftrightarrow\\ \Leftrightarrow x=(-1)^arcsin(0,2) +\pi k \end

Пример 3. Запишите в порядке возрастания: $$ arcsin0,2;\ \ arcsin(-0,7);\ \ arcsin\frac\pi4 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; \(\frac\pi4\approx 0,79\)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от \(-\frac\pi2\) до \(\frac\pi2\)).
Получаем: $$ arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4 $$Способ 2. Решение с помощью графика \(y=arcsinx\)

Отмечаем на оси OY аргументы 0,2; -0,7; \(\frac\pi4\approx 0,79\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4 $$Способ 3. Аналитический
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; \(\frac\pi4\).
И записываем арксинусы по возрастанию: \(arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4\)

Пример 4*. Решите уравнения:
\(a)\ arcsin(x^2-3x+3)=\frac\pi2\) \begin x^2-3x+3=sin\frac\pi2=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

\(б)\ arcsin^2x-arcsinx-2=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arcsin x,\ -\frac\pi2\leq t\leq \frac\pi2\)
Решаем квадратное уравнение: $$ t^2-t-2=0\Rightarrow (t-2)(t+1)=0\Rightarrow \left[ \begin t_1=2\gt \frac\pi2 — \text<не подходит>\\ t_2=-1 \end \right. $$ Возвращаемся к исходной переменной: \begin arcsinx=-1\\ x=sin(-1)=-sin1 \end Ответ: -sin1

\(в)\ arcsin^2x-\pi arcsinx+\frac<2\pi^2><9>=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arcsin x,\ -\frac\pi2\leq t\leq \frac\pi2\)
Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(-\pi)^2-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3 \Rightarrow \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi><3>\gt \frac\pi2 — \text <не подходит>\end \right. \end Возвращаемся к исходной переменной:
\begin arcsinx=\frac\pi3\\ x=sin\frac\pi3=\frac<\sqrt<3>> <2>\end Ответ: \(\frac<\sqrt<3>><2>\)

Уравнение. Простейшее тригонометрическое уравнение sin х = а.

Существует возможность отобразить всякий корень уравнения sin х = а, как абсциссу некой точки пересечения синусоиды у =sinх и прямой у = а, и, соответственно верно обратное, абсцисса всякой такой точки пересечения выступает одним из корней уравнения.

При | а| >1 синусоида у = sin х не пересечется с прямой у = а. В данном случае у уравнения нет корней.

При а = 0 у уравнение sin x = а будут корни:

где m изменяется по всем целым числам (m = 0, ±1, ±2, ±3, . ).

Несомненно, arcsin0 = 0 и соответственно получаем (-1) m arcsin 0 + mπ = mπ.

При а = 1, корни уравнения определяются по формуле:

где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . ).

Для обоснования формулы выполним подстановку: а = 1 в формулу:

(-1) m arcsin0+ mπ = mπ и принимая к сведению, что arcsin 1= π /2, имеем: (- 1) m arcsin 1 + mπ= (- 1) mπ /2 + mπ.

где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . . .).

Необходимо учитывать, что все вышеуказанные формулы можно применять в том случае, когда искомый угол х представлен в радианах. Когда х представлен в градусах, то эти формулы нужно преобразовать.

К примеру, вместо формулы (-1) m arcsin 0 + mπ = mπ необходимо применять формулу х= (-1) m arcsinа + 180m, вместо формулы х = mπ — формулу х= 180 m и т. д.

Схема решения тригонометрического уравнения sinx=a 10 класс алгебра

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тригонометрические функции – это функции вида

Уравнение вида где называется простейшим тригонометрическим уравнением .

Решением данного уравнение является

При уравнение не имеет решения.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 925 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 684 человека из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 309 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 578 791 материал в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 24.04.2017
  • 1360
  • 3
  • 24.04.2017
  • 6963
  • 36
  • 24.04.2017
  • 1247
  • 5
  • 24.04.2017
  • 1128
  • 10
  • 24.04.2017
  • 1519
  • 6
  • 24.04.2017
  • 16011
  • 118
  • 24.04.2017
  • 317
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 24.04.2017 399
  • DOCX 18.2 кбайт
  • 0 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Насырова Альфия Ревкатовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 9 месяцев
  • Подписчики: 0
  • Всего просмотров: 215662
  • Всего материалов: 47

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://www.calc.ru/Prosteysheye-Trigonometricheskoye-Uravneniye-Sin-Kh-A.html

http://infourok.ru/shema-resheniya-trigonometricheskogo-uravneniya-sina-klass-algebra-1831558.html