Схема с весами уравнения теплопроводности

Контрольная работа: Конечно-разностный метод решения для уравнений параболического типа

К дифференциальным уравнениям с частными производными приходим при решении самых разнообразных задач. Например, при помощи дифференциальных уравнений с частными производными можно решать задачи теплопроводности, диффузии, многих физических и химических процессов.

Как правило, найти точное решение этих уравнений не удается, поэтому наиболее широкое применение получили приближенные методы их решения. В данной работе ограничимся рассмотрением дифференциальных уравнений с частными производными второго порядка, а точнее дифференциальными уравнениями с частными производными второго порядка параболического типа, когда эти уравнения являются линейными, а искомая функция зависит от двух переменных

Для решения дифференциальных уравнений параболического типа существует несколько методов их численного решения на ЭВМ, однако особое положение занимает метод сеток, так как он обеспечивает наилучшие соотношения скорости, точности полученного решения и простоты реализации вычислительного алгоритма. Метод сеток еще называют методом конечных разностей.

1 Теоретическая часть

1.1 Постановка задач для уравнений параболического типа

Классическим примером уравнения параболического типа является уравнение теплопроводности (диффузии). В одномерном по пространству случае однородное (без источников энергии) уравнение теплопроводности имеет вид

(1)

Если на границах и заданы значения искомой функции в виде

, , (2)

, , (3)

т.е. граничные условия первого рода, и , кроме того заданы начальные условия

, , (4)

то задачу (1)-(4) называют первой начально-краевой задачей для уравнения теплопроводности (1).

В терминах теории теплообмена — распределение температуры в пространственно-временной области

a 2 — коэффициент температуропроводности, а (2), (3) с помощью функций , задают температуру на границах и .

Если на границах и заданы значения производных искомой функции по пространственной переменной:

, , (5)

, , (6)

т.е. граничные условия второго рода, то задачу (1), (5), (6), (4) называют второй начально-краевой задачей для уравнения теплопроводности (1). В терминах теории теплообмена на границах в этом случае заданы тепловые потоки.

Если на границах заданы линейные комбинации искомой функции и ее производной по пространственной переменной:

, , (7)

, , (8)

т.е. граничные условия третьего рода, то задачу (1), (7), (8), (4) называют третьей начально-краевой задачей для уравнения теплопроводности (1). В терминах теплообмена граничные условия (7), (8) задают теплообмен между газообразной или жидкой средой с известными температурами на границе и на границе и границами расчетной области с неизвестными температурами , . Коэффициенты α, β – известные коэффициенты теплообмена между газообразной или жидкой средой и соответствующей границей.

Для пространственных задач теплопроводности в области первая начально-краевая задача имеет вид

(9)

Аналогично ставится вторая и третья начально-краевые задачи для пространственного уравнения (9). На практике часто ставятся начально-краевые задачи теплопроводности со смешанными краевыми условиями, когда на границах задаются граничные условия различных родов.

1.2 Основные определения и конечно-разностные схемы

Основные определения, связанные с методом конечных разностей, рассмотрим на примере конечно-разностного решения первой начально-краевой задачи для уравнения теплопроводности (1)-(4).

Согласно методу сеток в плоской области D строится сеточная область Dh , состоящая из одинаковых ячеек. При этом область Dh должна как можно лучше приближать область D . Сеточная область (то есть сетка) Dh состоит из изолированных точек, которые называются узлами сетки. Число узлов будет характеризоваться основными размерами сетки h : чем меньше h , тем больше узлов содержит сетка. Узел сетки называется внутренним, если он принадлежит области D , а все соседние узлы принадлежат сетке Dh . В противном случае он называется граничным. Совокупность граничных узлов образует границу сеточной области Гh .

Сетка может состоять из клеток разной конфигурации: квадратных, прямоугольных, треугольных и других. После построения сетки исходное дифференциальное уравнение заменяется разностным уравнением во всех внутренних узлах сетки. Затем на основании граничных условий устанавливаются значения искомого решения в граничных узлах. Присоединяя граничные условия сеточной задачи к разностным уравнениям, записанных для внутренних узлов, получаем систему уравнений, из которой определяем значения искомого решения во всех узлах сетки.

Нанесем на пространственно-временную область , конечно разностную сетку ωh,τ :

(10)

с пространственным шагом h = l / N и шагом по времени τ=T/K.

Рисунок 1 – Конечно-разностная сетка

Введем два временных слоя : нижний ,на котором распределение искомой функции u ( xj , t k ) , , известно (при к = 0 распределение определяется начальным условием (4)u ( xj , t k )=ψ( xj ) ), и верхний временной слой t k +1 =( k +1) τ , на котором распределение искомой функции u ( xj , t k +1 ) , .

Сеточной функцией задачи (1)-(4) называют однозначное отображение целых аргументов j , k в значения функции .

На введенной сетке вводят сеточные функции , первая из которых известна, вторая подлежит определению. Для определения в задаче (1)-(4) заменяют (аппроксимируют) дифференциальные операторы отношением конечных разностей (более подробно это рассматривают в разделах численных методов «Численное дифференцирование»), получают

, (11)

, (12)

Подставляя (11), (12) в задачу (1)-(4), получим явную конечно-разностную схему для этой задачи в форме

(13)

В каждом уравнении этой задачи все значения сеточной функции известны, за исключением одного, , которое может быть определено явно из соотношений (13). В соотношения (13) краевые условия входят при значениях j =1 и j = N l , a начальное условие – при k = 0.

Если в (12) дифференциальный оператор по пространственной переменной аппроксимировать отношением конечных разностей на верхнем временном слое:

, (14)

то после подстановки (11), (14) в задачу (1)-(4) получим неявную конечно-разностную схему для этой задачи:

(15)

Теперь сеточную функцию на верхнем временном слое можно получить из решения (15) с трехдиагональной матрицей. Эта СЛАУ в форме, пригодной для использования метода прогонки, имеет вид

;

;

, ;

;

;

;

.

Шаблоном конечно-разностной схемы называют ее геометрическую интерпретацию на конечно-разностной сетке. На рисунке приведены шаблоны для явной и неявной конечно-разностных схем при аппроксимации задачи.

Рисунок 2 — Шаблон явной конечно-разностной схемы для уравнения теплопроводности

Рисунок 3 — Шаблон неявной конечно-разностной схемы для уравнения теплопроводности

В случае явных схем значения функции в узле очередного слоя можно найти, зная значения в узлах предыдущих слоев. В случае неявных схем для нахождения значений решения в узлах очередного слоя приходится решать систему уравнений. Для проведения вычислений самой простой схемой оказывается первая: достаточно на основании начального условия найти значения функции в узлах слоя , чтобы в дальнейшем последовательно определять значения решения в узлах слоев и т.д. В случае второй схемы, которая является неявной, обязательно приходится решать систему уравнений для нахождения решения сеточной задачи. В любом случае согласно методу сеток будем иметь столько уравнений, сколько имеется неизвестных (значения искомой функции в узлах). Число неизвестных равно числу всех узлов сетки. Решая систему уравнений, получаем решение поставленной задачи.

Разрешимость этой системы для явных схем вопросов не вызывает, так как все действия выполняются в явно определенной последовательности. В случае неявных схем разрешимость системы следует исследовать в каждом конкретном случае. Важным вопросом является вопрос о том, на сколько найденные решения хорошо (адекватно) отражают точные решения, и можно ли неограниченно сгущая сетку (уменьшая шаг по осям) получить приближенные решения, сколь угодно близкие к точным решениям? Это вопрос о сходимости метода сеток.

На практике следует применять сходящиеся разностные схемы, причем только те из них, которые являются устойчивыми, то есть при использовании которых небольшие ошибки в начальных или промежуточных результатах не приводят к большим отклонениям от точного решения. Всегда следует использовать устойчивые разностные схемы, проводя соответствующие исследования на устойчивость. Явные схемы просты для организации вычислительного процесса, но имеют один весьма весомый недостаток: для их устойчивости приходится накладывать сильные ограничения на сетку. Неявные схемы свободны от этого недостатка, но есть другая трудность – надо решать системы уравнений большой размерности, что на практике при нахождении решения сложных уравнений в протяженной области с высокой степенью точности может потребовать больших объемов памяти ЭВМ и времени на ожидание конечного результата. К счастью, прогресс не стоит на месте и уже сейчас мощности современных ЭВМ вполне достаточно для решения поставленных перед ними задач.

Вопрос устойчивости будет рассмотрен далее.

Из определения порядка аппроксимации ясно, что чем выше порядок аппроксимации, тем лучше конечно-разностная схема приближается к дифференциальной задаче. Это не означает, что решение по разностной схеме может быть так же близко к решению дифференциальной задачи, так как разностная схема может быть условно устойчивой или абсолютно неустойчивой вовсе.

Для нахождения порядка аппроксимации используется аппарат разложения в ряды Тейлора точных (неизвестных, но дифференцируемых) решений дифференциальной задачи в узлах сетки (подчеркнем: значения сеточной функции uh дискретны, следовательно, не дифференцируемы и поэтому не разлагаются в ряды Тейлора).

1.4 Устойчивость. Исследование устойчивости методом гармонического анализа

конечно-разностная схема устойчива, если для малых возмущений входных данных (начально-краевых условий и правых частей) конечно-разносная схема обеспечивает малые возмущения сеточной функции uh т.е. решение с помощью конечно-разностной схемы находится под контролем входных данных.

Если во входные данные fn входят только начальные условия или только краевые условия, или только правые части, то говорят об устойчивости соответственно по начальным условиям, по краевым условиям или по правым частям.

Из математической физики известно, что решение начально-краевых задач представляется в виде следующего ряда:

, (16)

где λ n – собственные значения

– собственные значения функции, получаемые из решения соответствующей задачи Штурма-Лиувиля, т.е. решение может быть представлено в виде суперпозиции отдельных гармоник , каждая из которых есть произведение функции времени и функции пространственной переменной, причем последняя по модулю ограничена сверху единицей при любых значениях переменной x .

В то же время функция времени , называемая амплитудной частью гармоники, никак не ограничена, и, по всей вероятности, именно амплитудная часть гармоник является источником неконтролируемого входными данными роста функции и, следовательно, источником неустойчивости.

Таким образом, если конечно-разностная схема устойчива, то отношение амплитудной части гармоники на верхнем временном слое к амплитудной части на нижнем временном слое по модулю должно быть меньше единицы.

Если разложить значение сеточной функции в ряд Фурье по собственным функциям:

(17)

где амплитудная часть может быть представлена в виде произведения

(18)

где – размерный и постоянный сомножитель амплитудной части,

k – показатель степени (соответствующий номеру временного слоя) сомножителя, зависящего от времени.

Тогда подставив (17) в конечно-разностную схему, можно по модулю оценить отношение амплитудных частей на соседних временных слоях.

Однако поскольку операция суммирования линейна и собственные функции ортогональны для различных индексов суммирования, то в конечно-разностную схему вместо сеточных значений достаточно подставить одну гармонику разложения (17) (при этом у амплитудной части убрать индекс n ), т.е.

(19)

Таким образом, если конечно-разностная схема устойчива по начальным данным , то

, (20)

т. е. условие (20) является необходимым условием устойчивости.

1.5 Схема Кранка-Николсона

параболическое дифференциальное уравнение конечная разность

Явная конечно разностная схема, записанная в форме

(21)

обладает тем достоинством, что решение на верхнем временном слое tk+l получается сразу (без решения СЛАУ) по значениям сеточной функции на нижнем временном слое t k , где решение известно (при k = 0 значения сеточной функции формируются из начального условия). Но эта же схема обладает существенным недостатком, поскольку она является условно устойчивой. С другой стороны, неявная конечно-разностная схема, записанная форме

(22)

приводит к необходимости решать СЛАУ, но зато эта схема абсолютно устойчива.

Проанализируем схемы (21) и (22). Пусть точное решение, которое неизвестно, возрастает по времени, т.е. . Тогда, в соответствии с явной схемой (21), разностное решение будет заниженным по сравнению с точным, так как определяется по меньшим значениям сеточной функции на предыдущем временном слое, поскольку решение является возрастающим по времени.

Для неявной схемы (22) на возрастающем решении, наоборот, решение завышено по сравнению с точным, поскольку оно определяется по значениям сеточной функции на верхнем временном слое.

На убывающем решении картина изменяется противоположным образом: явная конечно-разностная схема завышает решения, а неявная — занижает (Рисунок 4).

На основе этого анализа возникла идея о построении более точной неявно-явной конечно-разностной схемы с весами при пространственных конечно-разностных операторах, причем при измельчении шагов тик точное (неизвестное) решение может быть взято в «вилку» сколь угодно узкую, так как если явная и неявная схемы аппроксимируют дифференциальную задачу и эти схемы устойчивы, то при стремлении сеточных характеристик τ и h к нулю решения по явной и неявной схемам стремятся к точному решению с разных сторон.

Рисунок 4 – Двусторонний метод аппроксимации

Проведенный анализ дал блестящий пример так называемых двусторонних методов, исследованных В. К. Саульевым

Рассмотрим неявно-явную схему с весами для простейшего уравнения теплопроводности:

(23)

где θ – вес неявной части конечно-разностной схемы,

θ -1 – вес для явной части

Причем . При θ=1 имеем полностью неявную схему, при θ=0 – полностью явную схему, а при θ=1/2 – схему Кранка-Николсона .

В соответствии с гармоническим анализом для схемы (23) получаем неравенство

,

(24)

причем правое неравенство выполнено всегда.

Левое неравенство имеет место для любых значений σ , если . Если же вес θ лежит в пределах , то между σ и θ из левого неравенства устанавливается связь

(25)

являющаяся условием устойчивости неявно-явной схемы с весами (23), когда вес находится в пределах .

Таким образом, неявно-явная схема с весами абсолютно устойчива при и условно устойчива с условием (25) при .

Рассмотрим порядок аппроксимации неявно-явной схемы с весами, для чего разложим в ряд Тейлора в окрестности узла (x j ,tk ) на точном решении значения сеточных функций по переменной t , , по переменной х и полученные разложения подставим в (23):

В этом выражении дифференциальный оператор от квадратной скобки в соответствии с дифференциальным уравнением равен дифференциальному оператору , в соответствии с чем вышеприведенное равенство приобретает вид

После упрощения получаем

,

откуда видно, что для схемы Кранка-Николсона (θ = 1/2) порядок аппроксимации схемы (23) составляет , т.е. на один порядок по времени выше, чем для обычных явных или неявных схем. Таким образом, схема Кранка-Николсона при θ = 1/2 абсолютно устойчива и имеет второй порядок аппроксимации по времени и пространственной переменной х .

Используем в уравнение (23) подстановку r= a 2 k / h 2 . Но в то же время его нужно решить для трех «еще не вычисленных» значений , , и . Это возможно, если все значения перенести в левую часть уравнения. Затем упорядочим члены уравнения (23) и в результате получим неявную разностную формулу

(26)

для i=2,3,…, n-1 . Члены в правой части формулы (26) известны. Таким образом, формула (26) имеет вид линейной трехдиагональной системы АХ=В. Шесть точек, используемых в формуле Кранка-Николсона (26), вместе с промежуточной точкой решетки, на которой основаны численные приближения, показаны на рисунке 5.

Рисунок 5 – Шаблон (схема) метода Кранка-Николсона

Иногда в формуле (26) используется значение r=1 . В этом случае приращение по оси t равно , формула (26) упрощается и принимает вид

, (27)

для i=2,3,…, n-1 . Граничные условия используются в первом и последнем уравнениях (т. е. в и соответственно).

Уравнения (27) особенно привлекательны при записи в форме трехдиагональной матрицы АХ = В.

Если метод Кранка-Николсона реализуется на компьютере, то линейную систему АХ = В можно решить либо прямым методом, либо итерационным.

2. Практическая часть

2.1 Постановка задачи

Используем метод Кранка-Николсона, чтобы решить уравнение

,

с начальным условием

,

и граничными условиями

2.2 Решение в ППП MatLab

Решение будем искать в ППП MatLab 7. Создадим четыре выполняемых m-фала: crnich.m – файл-функция с реализацией метода Кранка-Николсона; trisys.m – файл-функция метода прогонки; f.m – файл-функция задающая начальное условие задачи; fе.m – файл-функция задающая функцию определяющую точное решение задачи(найдена аналитическим путем). Листинги программ представлены в приложении А.

Для простоты возьмем шаг Δх = h = 0,1 и Δ t = к = 0,01 . Таким образом, соотношение r =1. Пусть решетка имеет n=11 столбцов в ширину и m=11 рядов в высоту.

2.3 Анализ результатов

Решения для данных параметров отразим в таблице 1. Трехмерное изображение данных из таблицы покажем на рисунке 5.

Таблица 1 – Значения u(х i , ti ), полученные методом Кранка-Николсона

Название: Конечно-разностный метод решения для уравнений параболического типа
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 23:16:39 16 апреля 2011 Похожие работы
Просмотров: 16037 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
xi 00.10.20.30.40.50.60.70.80.91
ti
001.11801.53881.11800.363300.36331.11801.53881.11800
0.0100.61690.92880.86210.61770.49050.61770.86210.92880.61690
0.0200.39420.64800.71860.68000.64880.68000.71860.64800.39420
0.0300.28870.50670.62530.66650.67330.66650.62530.50670.28870
0.0400.23310.42580.55600.62510.64580.62510.55600.42580.23310
0.0500.19950.37200.49960.57540.60020.57540.49960.37200.19950
0.0600.17590.33150.45110.52530.55040.52530.45110.33150.17590
0.0700.15740.29810.40820.47780.50150.47780.40820.29810.15740
0.0800.14190.26930.36980.43380.45580.43380.36980.26970.14190
0.0900.1830.24370.33510.39360.41370.39360.33510.24370.12830
0.100.11610.22080.30380.35700.37530.35700.30380.22080.11610

Величины, полученные методом Кранка-Николсона, достаточно близки к

аналитическому решению u(x,t) = sin(πx)e -π2 t + sin(3πx)e -9π2 t , истинные значения для последнего представлены в таблице 2

Максимальная погрешность для данных параметров равна 0,005

Таблица 2 – точные значения u(х i , ti ), при t=0.1

xi 00.10.20.30.40.50.60.70.80.91
t11
0.100.11530.21920.30160.35440.37260.35440.30160.21920.11530

Рисунок 5 –Решениеu= u(х i , ti ), для метода Кранка-Николсона

В зависимости от формы области, краевых условий, коэффициентов исходного уравнения метод конечных разностей имеет погрешности аппроксимации от первого до четвертого порядка относительно шага. В силу этого они успешно используются для разработки программных комплексов автоматизированного проектирования технических объектов.

В МКР строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в около граничных узлах. В связи с этим МКР чаще применяется для анализа задач с прямолинейными границами областей определения функций.

Проблемой методов конечных разностей является высокая размерность результирующей системы алгебраических уравнений (несколько десятков тысяч в реальных задачах. Поэтому реализация методов конечных разностей в составе САПР требует разработки специальных способов хранения матрицы коэффициентов системы и методов решения последней.

1 Березин И.С., Жидков Н.П. Методы вычислений. Т.2. – М.: Физматгиз, 1962.

2 Мэтьюз, Джон, Г., Финк, Куртис, Д. Численные методы. Использование MATLAB, 3-е издание.— М. : Вильяме, 2001. — 720 с

3 Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1972.

4 Формалев В.Ф., Ревизников Д.Л. Численные методы. – М.: ФИЗМАТЛИТ, 2004. — 400 с.

5 Пирумов У.Г. Численные методы. – М.: Издательство МАИ, 1998.

6 Калиткин Н.Н. Численные методы. – М.: Наука, 1976.

Листинг программы для расчета по методу Кранка-Николсона

Опорный конспект лекции

Ф СО ПГУ 7.18.2/06

Министерство образования и науки Республики Казахстан

Павлодарский государственный университет им. С. Торайгырова

дисциплины «Численные методы решения задач математической физики»

для специальности 050601 Математика

Ф СО ПГУ 7.18.1/07

УТВЕРЖДАЮ

Проректор по УР

Составители: доцент ,

преподаватель

Кафедра «Информатика и информационные системы»

Опорный конспект лекции

по дисциплине «Численные методы решения задач математической физики »

для студентов специальностей 050601 Математика

Рекомендована на заседании кафедры от “____”___200___г.

Заведующая кафедрой ___________

Одобрена методическим советом факультета Физики, математики и информационных технологий “___”______200 _ г. Протокол №___

Председатель МС__________________________

Тема 1. Основные задачи математической физики.

Разностные уравнения. Пространство сеточных функций. Разностные операторы. Разностная аппроксимация оператора Лапласа. Задачи на собственные значения для разностного оператора Лапласа. Разностные формулы Грина. Свойства разностных операторов. Априорные оценки. Аппроксимация дифференциальной начально-краевой задачи разностной схемой. Шаблон. Порядок аппроксимации. Определение устойчивости. Аппроксимация нормированного пространства. Внутренние и внешние аппроксимации. Невязка. Ошибка аппроксимации. Устойчивость. Сходимость.

Решение обыкновенных дифференциальных уравнений зависит лишь от одной переменной и так далее. Во многих практических задачах решения — искомые функции зависят от нескольких переменных и уравнения, описывающие данные задачи могут содержать частные производные искомых функции. Они называются уравнениями с частными производными.

Математическая постановка задачи вместе с дифференциальными уравнениями содержит и некоторые дополнительные условия. Если решение ищется в ограниченной области, то задаются условия на ее границе, называемые граничными (краевыми) условиями. Такие задачи носят названия краевых задач для уравнений с частными производными.

Задача, которая состоит в решении уравнений при заданных начальных условиях, называется задачей Коши (ЗК) для уравнений с частными производными. При этом задача решается в неограниченном пространстве , и граничные условия не задаются. Задача, у которой ставится , и начальные и граничные условия называются нестационарными (смешанными) краевыми задачами. Получающиеся при этом решения меняются с течением времени.

Задачи, решение которых существует и единственно в некотором классе начальных и граничных условий и непрерывно зависит как от этих условий, так и от коэффициентов этих уравнений, называются корректно поставленными.

Среди численных методов рассмотрим разностные методы, которые основаны на введение некоторой разностной сетки в рассматриваемой области. Все значения производных, начальные и граничные условия выражаются через значения функции в узлах сетки, в результате чего получается система линейных уравнений, называемая разностной схемой. Построение разностных схем решения уравнений с частными производными основано на введение сетки в рассматриваемой области. Узлы сетки являются расчетными точками.

a £ x £ b xi = a + ih 1 ( I =0,1,…, I )

c £ y £ d yj=c+jh2 (j=0,1,…,J)

Для построения разностной схемы, частные производные в уравнений заменяются, конечно — разностными соотношениями по некоторому шаблону. При этом точные значения искомой функции U заменяются значениями сеточной функции u в узлах разностной сетки.

Разностная схема для решения уравнения теплопроводности при заданных начальных и граничных условий имеет следующий вид:

— распределение температуры на концах рассматриваемого отрезка [0,1] в любой момент, начальные и граничные условия должны быть согласованы, то есть . Вводим прямоугольную сетку:

— шаги. — значение функции в узлах сетки. Таким образом,

Получаем систему алгебраических уравнений для определения значений сеточных функции во внутренних узлах. Из граничного условия

(4)

При совокупность узлов называется слоем. Из (2) находим последовательно значения на слое через соответствующие значения на — том слое. Такие схемы называются явными. Для начала счета при необходимо решение на начальном слое, которое определяется начальным условием, имеющим следующий вид:

(5)

В отличие от явной схемы каждое разностное уравнение (3) содержит на каждом новом слое значения неизвестных в трех точках, поэтому нельзя сразу определить эти значения через известное решение на предыдущем слое. Они носят названия неявных схем. При этом разностная схема (3) состоит из линейных трехточечных уравнений, то есть каждое уравнение содержит неизвестную функцию в трех точках данного слоя. Решаются методом прогонки.

В данном примере рассматривали двухслойную схему, т. е. в каждое разностное уравнение входят значения функции их двух слоев – нижнего, на котором решение уже найдено, и верхнего, в узлах которого решение ищется.

Сходимость. Аппроксимация. Устойчивость .

Дифференциальная задача состоит в решение уравнения с частными производными при заданных начальных и граничных условии записывается в операторном виде:

(6)

Операторное уравнение включает исходное уравнение с частными производными, и дополненное, включающее начальные и граничные условия. описывает правые части уравнения, начальные и граничные условия, включает и расчетную область, и границу. Дифференциальную задачу (6) заменяем разностной задачей, где , где .

(7)

Значение сеточной функции в узлах сетки приближенно заменяют значения искомой функции в тех же узлах с погрешностями

. (8)

Вводим .

Разностная схема (7) называется сходящейся, если при сгущении узлов сетки, это значение погрешности стремится к нулю, т. е. если (9).

Если где , то разностная схема имеет k-ый порядок точности или говорят, что она сходится со скоростью .

Запишем уравнение (7) для погрешности решения на сетке . Подставляя в (7), имеем (10)

Величина называется невязкой (погрешностью аппроксимации) разностной схемы. Вводим характеристическую величину

(11)

при аппроксимация имеет k — ый порядок относительно h. Разностная схема (7) аппроксимирует исходную дифференциальную задачу (6), если при измельчении сетки невязка стремится к нулю, т. е. если

(1 2 )

Абсолютной (безусловной) аппроксимацией называется аппроксимация такого типа, когда невязка стремится к нулю при по любому закону без каких — либо условий. При условной аппроксимации налагаются некоторые условия на размеры шагов по пространству и времени. Разностная схема (7) называется устойчивой, если ее решение непрерывно зависит от входных данных, т. е. малому изменению входных данных соответствует малое изменение решения. Устойчивость характеризует чувствительность разностной схемы к различного рода погрешностям.

Теорема: Если решение исходной дифференциональной задачи (6) существует, а разностная схема (7) устойчива и аппроксимирует (6) на данном решение, то разностное решение сходится к точному.

[1] — [5], введение, глава 5

Тема 2. Разностные схемы для уравнений параболического типа

Классы устойчивых двухслойных схем. Энергетическое тождество. Дискретизация одномерного уравнения теплопроводности. Шаблоны. Порядок разностной аппроксимации. Исследование устойчивости методом Фурье. Начально-краевые задачи. Семейство шеститочечных схем. Явная и неявная схемы. Схема Кранка-Николсона. Порядок аппроксимации, устойчивость. Трехслойные схемы для уравнения теплопроводности. Схема Дюфорта и Франкеля. Порядок аппроксимации и устойчивости. Схема «ромб». Погрешности аппроксимации, устойчивости. Схемы с весами. Погрешность аппроксимации и устойчивость.

2.1 Постановка задач для уравнений параболического типа

Классическим примером уравнения параболического типа является уравнение теплопроводности (диффузии). В одномерном по пространству случае однородное (без источников энергии) уравнение теплопроводности имеет вид

. ( 2 .1)

Если на границах х=0 и х=l заданы значения искомой функции u(x, t) в виде

( 2 .2)

т. е. граничные условия первого рода, и, кроме того, заданы начальные условия

то задачу (2.1)-(2.4) называют первой начально-краевой задачей для уравнения теплопроводности (2.1).

В терминах теории теплообмена u(x, t) – распределение температуры в пространственно-временной области коэффициент температуропроводности, а (2.2), (2.3) с помощью функций ϕ 0 (t), ϕ l (t) задают температуру на границах x=0 и x=l.

Если на границах х=0 и х=l заданы значения производных искомой функции по пространственной переменной

(2.5) (2.6)

т. е. граничные условия второго рода, то задачу (25.1), (2.5), (2.6), (2.4) называют второй начально-краевой задачей для уравнения теплопроводности (2.1). В терминах теории теплообмена на границах в этом случае заданы тепловые потоки.

Если на границах заданы линейные комбинации искомой функции и ее производной по пространственной переменной

(2.7)

(2.8)

т. е. граничные условия третьего рода, то задачу (2.1), (2.7), (2.8), (2.4) называют третьей начально-краевой задачей для уравнения теплопроводности (2.1). В терминах теории теплообмена граничные условия (2.7), (2.8) задают теплообмен между газообразной или жидкой средой и границами расчетной области с неизвестными температурами u(0,t), u(l, t).

Для пространственных задач теплопроводности в области первая начально-краевая задача имеет вид

Аналогично ставится вторая и третья начально-краевые задачи для пространственного уравнения задачи (2.9) – (2.11).

На практике часто ставятся начально-краевые задачи теплопроводности со смешанными краевыми условиями, когда на границах задаются граничные условия различных родов.

2 .1.2. Понятие о методе конечных разностей. Применение метода конечных разностей к решению уравнений параболического типа

Основные определения, связанные с методом конечных разностей, рассмотрим на примере конечно-разностного решения первой начально-краевой задачи для уравнения теплопроводности (2.1)-(2.4). Нанесем на пространственно-временную область 0≤x≤l, 0≤t≤T конечно-разностную сетку ω hτ

(2.12)

с пространственным шагом h=l/N и шагом по времени τ=T/K (рис 2.1).

Введем два временных слоя: нижний tk=kτ , на котором распределение искомой функции u(xj, tk), известно (при k=0 распределение определяется начальным условием (2.4) u(xj, t0)=ψ(xj)) и верхний временной слой tk+1=(k+1)τ, на котором распределение искомой функции u(x j j ,tk+1), j =0,1,…,N подлежит определению.

Рис. 2 .1. Конечно-разностная сетка

Сеточной функцией задачи (2.1)-(2.4) (обозначение ) назовем однозначное отображение целых аргументов j, k в значения функции

На введенной сетке (2.12) введем сеточные функции первая из которых известна, вторая – подлежит определению. Для ее определения в задаче (2.1)-(2.4) заменим (аппроксимируем) дифференциальные операторы отношением конечных разностей (см. раздел «Численное дифференцирование»), получим

(2.13)

(2.14)

Подставляя (2.13), (2.14) в задачу (2.1)-(2.4), получим явную конечно-разностную схему для этой задачи в форме

(2.15)

где для каждого j -го уравнения все значения сеточной функции известны, за исключением одного , которое может быть определено явно из соотношений (2.15). В соотношения (2.15) краевые условия ( j =0, j = N ) входят при значениях j=1 и j=N-1, а начальное условие – при k=0.

Если в (2.14) дифференциальный оператор по пространственной переменной аппроксимировать отношением конечных разностей на верхнем временном слое

(2.16)

то после подстановки (2.13), (2.16) в задачу (2.1)-(2.4), получим неявную конечно-разностную схему для этой задачи

( 2 .17)

Теперь сеточную функцию на верхнем временном слое можно получить из решения СЛАУ (2.17) с трехдиагональной матрицей. Эта СЛАУ в форме, пригодной для использования метода прогонки, имеет вид

Шаблоном конечно-разностной схемы называют ее геометрическую интерпретацию на конечно-разностной сетке.

Рис. 2 .2. Шаблоны явной и неявной конечно-разностных схем для уравнения теплопроводности

На рисунке 2.2 приведены шаблоны для явной (2.15) и неявной (2.17) конечно-разностных схем при аппроксимации задачи (2.1)-(2.4).

Явная конечно-разностная схема (2.15), записанная в форме

(2.18)

обладает тем достоинством, что решение на верхнем временном слое получается сразу (без решения СЛАУ) по значениям сеточных функций на нижнем временном слое , где решение известно (при k=0 значения сеточной функции формируются из начального условия (2.4.)). Но эта же схема обладает существенным недостатком, поскольку она является условно устойчивой с условием , накладываем на сеточные характеристики τ и h.

С другой стороны, неявная конечно-разностная схема (2.17), записанная форме

( 2 .19)

приводит к необходимости решать СЛАУ, но зато эта схема абсолютно устойчива.

Проанализируем схемы (2.18), (2.19). Пусть точное решение, которое не известно, возрастает по времени, т. е. . Тогда, в соответствии с явной схемой (2.18) разностное решение будет заниженным по сравнению с точным, т. к. определяется по меньшим значениям сеточной функции на предыдущем временном слое, поскольку решение является возрастающим по времени.

Для неявной схемы (2.19) на возрастающем решении, наоборот, решение завышено по сравнению с точным, поскольку оно определяется по значениям сеточной функции на верхнем временном слое.

На убывающем решении картина изменяется противоположным образом: явная конечно-разностная схема завышает решения, а неявная — занижает (см. рис. 2.3)

Рис. 2 .3. Двусторонний метод аппроксимации

На основе этого анализа возникла идея о построении более точной неявно-явной конечно-разностной схемы с весами при пространственных конечно-разностных операторах, причем при измельчении шагов τ и h точное (неизвестное) решение может быть взято в ″вилку″ сколь угодно узкую, т. к. если явная и неявная схемы аппроксимируют дифференциальную задачу и эти схемы устойчивы, то при стремлении сеточных характеристик и h к нулю, решения по явной и неявной схемам стремятся к точному решению с разных сторон.

Рассмотрим неявно-явную схему с весами для простейшего уравнения теплопроводности

( 2 .20)

где θ — вес неявной части конечно-разностной схемы, 1−θ — вес для явной части, причем 0≤θ≤1. При θ=1 имеем полностью неявную схему, при θ=0 — полностью явную схему, и при θ=1/2 — схему Кранка-Николсона. Для схемы Кранка-Николсона (θ=1/2) порядок аппроксимации составляет, т. е. на один порядок по времени выше, чем обычные явная или неявная схемы.

Неявно-явная схема с весами (2.20) абсолютно устойчива при 1/2≤θ≤1 и условно устойчива с условием при 0≤θ

Таким образом, схема Кранка-Николсона (2.20) при θ=1/2 абсолютно устойчива и имеет второй порядок аппроксимации по времени и пространственной переменной x.

2 .1.3. Аппроксимация граничных условий, содержащих производные

В задачах математической физики вообще, и в задачах теплопроводности в частности, граничные условия 1-го рода аппроксимируются точно в узлах на границе расчетной области. Граничные условия 2-го и 3-го рода отличаются тем, что в них присутствует производная первого порядка искомой функции по пространственной переменной. Поэтому для замыкания конечно-разностной схемы необходима их аппроксимация. Простейшим вариантом является аппроксимация производных направленными разностями первого порядка:

Тогда в общем случае граничных условий 3-го рода (2.7), (2.8) уравнения, связывающие значения искомой функции в двух крайних узлах разностной сетки, выглядят следующим образом:

Дополняя полученными уравнениями явную конечно-разностную аппроксимацию во внутренних узлах, получим явную разностную схему для третьей начально-краевой задачи (2.1), (2.4), (2.7), (2.8).

В результате алгоритм перехода на новый временной слой с использованием явной схемы можно представить в следующем виде:

Т. е. сначала рассчитываются значения искомой функции во всех внутренних узлах на новом временном слое, а затем определяются значения на границах.

При использовании неявной конечно-разностной схемы получаем следующий разностный аналог дифференциальной задачи:

В результате для получения решения на новом временном слое решается система линейных алгебраических уравнений с трехдиагональной матрицей. Аналогичная картина имеет место и при использовании неявно-явной схемы с весами.

Принципиальной особенностью рассмотренного выше подхода является первый порядок аппроксимации граничных условий. Т. е. порядок аппроксимации в граничных узлах ниже порядка аппроксимации во внутренних узлах расчетной области. При этом глобальный порядок аппроксимации (во всей расчетной области) равен наименьшему относительно всех узлов сетки порядку аппроксимации.

Одним из способов повышения порядка аппроксимации граничных условий является использование формул численного дифференцирования второго порядка:

В случае явной схемы алгоритм вычисления решения на новом временном слое при такой аппроксимации граничных условий не приобретает принципиальных изменений. Если же используется неявная схема, то получающаяся при этом СЛАУ теряет трехдиагональный вид (первое и последнее уравнение содержат три неизвестных). Этот недостаток легко устраним, т. к. путем линейной комбинации первого уравнения со вторым (последнего с предпоследним) можно добиться исключения третьего неизвестного из соответствующего уравнения. Однако при этом возможно нарушение диагонального преобладания матрицы и, следовательно, нарушение условий применимости метода прогонки.

Более эффективным является подход, позволяющий повысить порядок аппроксимации граничных условий без увеличения числа узлов в аппроксимационных соотношениях. Для иллюстрации этого подхода рассмотрим следующий пример.

Решить третью начально-краевую задачу для параболического уравнения, содержащего как конвективные члены (пропорциональные производной ), так и источниковые члены, содержащие искомую функцию

(2.21)-(2.24) Решение.

Во внутренних узлах конечно-разностной сетки неявная конечно-разностная схема для уравнения (2.21) имеет вид:

(2.25)

Если производные первого порядка в граничных условиях (2.22) и (2.23) аппроксимировать по следующей схеме (с помощью отношения конечных разностей справа и слева)

то граничные условия аппроксимируются с первым порядком, и глобальный порядок будет равен первому порядку несмотря на то, что во всех остальных узлах порядок аппроксимации по пространственным переменным равен двум. Для сохранения порядка аппроксимации, равного двум, в граничных узлах разложим на точном решении значение в окрестности точки x=0 в ряд Тейлора по переменной x до третьей производной включительно, — в аналогичный ряд в окрестности точки x= l , получим (в предположении что функция u(x, t) в граничных узлах имеет первые производные по времени и вторые — по x):

(2.26)

. (2.27)

Далее, подставим сюда значения второй производной в граничных узлах, полученные из дифференциального уравнения (2.21):

и найдем из полученных выражений (2.26), (2.27) значения первой производной в граничных узлах с порядком

Подставляя в (2.22), а в (2.23) и аппроксимируя полученные соотношения в соответствующих граничных узлах (при этом получим алгебраические уравнения для граничных узлов, в каждом из которых два неизвестных:

(2.28)

(2.29)

Таким образом, (2.28) — конечно-разностная аппроксимация граничного условия 3-го рода (2.22) на левой границе x=0, а (2.29) — конечно-разностная аппроксимация граничного условия 3-го рода (2.23) на правой границе x=l, которые сохраняют тот же порядок аппроксимации, что и в конечно-разностной аппроксимации (2.25) дифференциального уравнения (2.21).

Приписывая к граничным конечно-разностным уравнениям (2.28), (2.29), каждое из которых содержит два значения сеточной функции, алгебраические уравнения (2.25), записанные в виде

(2.30)

получим СЛАУ с трехдиагональной матрицей, решаемую методом прогонки

(2.31)

Изложенный метод аппроксимации краевых условий, содержащих производные по пространственным переменным, повышает не только порядок аппроксимации, но и сохраняет консервативность конечно-разностной схемы, т. е. в конечно-разностной аппроксимации соблюдаются законы сохранения, на основе которых выведены дифференциальные соотношения задачи (2.

Аналогичный подход можно осуществить в краевых задачах для дифференциальных уравнений любых типов.

Тема 3. Разностные схемы для уравнений гиперболического типа Разностные схемы для уравнения колебания струны. Явная схема («крест»). Неявная схема (типа Кранка-Николсона). Порядок аппроксимации. Исследование устойчивости методом Фурье. Семейство схем с весами. Устойчивость. Погрешность аппроксимации. Исследование устойчивости разностных схем для уравнения колебания.

3.1. Постановка задач для уравнений гиперболического типа

Классическим примером уравнения гиперболического типа является волновое уравнение, которое в области 0 0 имеет вид:

Данное уравнение описывает, в частности, процесс малых поперечных колебаний струны. В этом случае u(x, t) — поперечные перемещения (колебания) струны, а – скорость распространения малых возмущений в материале, из которого изготовлена струна.

Если концы струны движутся по заданным законам, то есть на концах заданы перемещения (или значения искомой функции), то первая начально-краевая задача для волнового уравнения имеет вид:

(3.

причем, если концы струны жестко закреплены, то ϕ 0 (t)= ϕ l (t)=0.

Как видно, в задачах для волнового уравнения, кроме начального распределения искомой функции, задается еще распределение начальной скорости перемещения.

Если на концах струны заданы значения силы, которая по закону Гука пропорциональна значениям производной перемещения по пространственной переменной (то есть на концах заданы значения первых производных по переменной x), то ставится вторая начально-краевая задача для волнового уравнения:

В условиях, когда концы струны свободны, функции ϕ 0 (t)= ϕ l (t)=0.

Наконец в условиях, когда концы закреплены упруго, т. е. на концевые заделки действуют силы, пропорциональные перемещениям, ставится третья начально-краевая задача для волнового уравнения:

Аналогично ставятся двумерные и трехмерные начально-краевые задачи для двумерного и трехмерного волнового уравнения.

3.2 Конечно-разностная аппроксимация уравнений гиперболического типа

Рассмотрим первую начально-краевую задачу для волнового уравнения (3.1)-(3.5). На пространственно-временной сетке (3.12) будем аппроксимировать дифференциальное уравнение (3.1) одной из следующих конечно-разностных схем:

(3.6) с шаблоном на рисунке 3.1а и

(3. 7 )

Рис. 3.1. Шаблоны конечно-разностных схем для волнового уравнения

с шаблоном на рисунке 3.1 б

При этом схема (3.6) является явной. С ее помощью решение определяется сразу, поскольку значения сеточных функции, на нижних временных слоях должны быть известны. В соответствии с шаблоном для этой схемы порядок аппроксимации равен двум, как по пространственной, так и по временной переменной. При этом явная конечно-разностная схема (3.6) для волнового уравнения условно устойчива с условием , накладываемым на сеточные характеристики τ , h ..

Схема (3.7) является неявной схемой и обладает абсолютной устойчивостью. Ее можно свести к СЛАУ с трехдиагональной матрицей, решаемой методом прогонки.

В обеих схемах необходимо знать значения на нижних временных слоях. Для k =1 это делается следующим образом:

(3.8)

где функция из начального условия (3.5).

Для определения можно воспользоваться простейшей аппроксимацией второго начального условия (3.6):

Откуда для искомых значений получаем следующее выражение:

Недостатком такого подхода является первый порядок аппроксимации второго начального условия. Для повышения порядка аппроксимации воспользуемся следующей процедурой.

Разложим в ряд Тейлора на точном решении по времени в окрестности t=0 :

. (3.9)

Для определения второй производной в выражении (3.9) воспользуемся исходным дифференциальным уравнением.

В результате получаем искомую сеточную функцию со вторым порядком точности:

. После определения из начальных условий значений сеточных функций, на двух первых временных слоях вычислительный процесс продолжается согласно схемам (3.8) или (3.9). При этом аппроксимация краевых условий (3.3) и (3.4) производится аналогично тому, как это описывалось выше для уравнений параболического типа. Для иллюстрации этого этапа рассмотрим следующий пример.

Выписать явную конечно-разностную схему для третьей начально-краевой задачи.

Аппроксимация дифференциального уравнения на шаблоне (3.1б) выглядит следующим образом:

где.

Граничные условия аппроксимируем с первым порядком:

. В результате переход на новый временной слой представляется следующим алгоритмом:

Таким образом, сначала рассчитываются значения искомой функции u во внутренних узлах на новом временном слое, после чего из аппроксимации граничных условий находятся значения функции в крайних узлах.

Для окончательного замыкания вычислительного процесса определим, исходя из начальных условий, значения искомой функции на двух первых временных слоях

В начальный момент времени значения определяются точно:

. Если воспользоваться аппроксимацией первого порядка по времени, то как было показано выше, получим

. Для повышения порядка аппроксимации разложим в ряд Тейлора на точном решении по времени в окрестности t=0 :

где, согласно исходному уравнению

Окончательно получаем .

Тема 4. Разностные схемы для уравнений эллиптического типа Задача Дирихле для уравнения Пуассона в квадрате. Аппроксимация. Однозначная разрешимость. Принцип максимума. Устойчивость. Разностная задача Дирихле в прямоугольнике. Сложная область. Связные и несвязные области. Метод установления. Явная и неявная схемы. Схема переменных направлений. Анализ явной схемы установления и анализ схемы переменных направлений.

Классическим примером уравнения эллиптического типа является уравнение Пуассона

или уравнение Лапласа при f(x, y)≡0.

Здесь функция u(x, y) имеет различный физический смысл, а именно: стационарное, независящее от времени, распределение температуры, скорость потенциального (безвихревого) течения идеальной (без трения и теплопроводности) жидкости, распределение напряженностей электрического и магнитного полей, потенциала в силовом поле тяготения и т. п.

Если на границе Г расчетной области задана искомая функция, то соответствующая первая краевая задача для уравнения Лапласа или Пуассона называется задачей Дирихле

(4.1)-(4.2)

Если на границе Г задается нормальная производная искомой функции, то соответствующая вторая краевая задача называется задачей Неймана для уравнения Лапласа или Пуассона

(4.3)-(4.4)

При этом n – направление внешней к границе Г нормали.

Более приемлемой является координатная форма краевого условия (4.4)

где − направляющие косинусы внешнего вектора единичной нормали к границе Г, i и j орты базисных векторов.

Наконец третья краевая задача для уравнения Пуассона (Лапласа) имеет вид

4.1. Конечно-разностная аппроксимация задач для уравнений эллиптического типа

Рис. 4.1. Центрально-симметричный шаблон

Рассмотрим краевую задачу для уравнений Лапласа или Пуассона (4.1), (4.2) в прямоугольнике , на который наложим сетку

(4.5)

На этой сетке аппроксимируем дифференциальную задачу во внутренних узлах с помощью отношения конечных разностей по следующей схеме (вводится сеточная функция ):

(4.6)

которая на шаблоне имеет второй порядок по переменным и, поскольку шаблон центрально симметричен.

СЛАУ имеет пяти-диагональный вид (каждое уравнение содержит пять неизвестных и при соответствующей нумерации переменных матрица имеет ленточную структуру). Решать ее можно различными методами линейной алгебры, например, итерационными методами, методом матричной прогонки и т. п.

Рис.4.2 Центрально — симметричный шаблон

Рассмотрим разностно-итерационный метод Либмана численного решения задачи Дирихле (4.1), (4.2). Для простоты изложения этого метода примем, тогда из схемы (4.6 ) получим (k-номер итерации)

(4.8)

На каждой координатной линии (например, ) с помощью линейной интерполяции (см. рис.4.3) граничных значений определим на нулевой итерации, подставив которые в (4.8), получим распределение на первой итерации

Рис. 4.3. К разностно-итерационному методу Либмана

Это распределение снова подставляются в (4.8), получаем распределение и т. д. Процесс Либмана прекращается, когда ,

где — наперед заданная точность.

При решении задач с граничными условиями 2-го и 3-го родов наряду с аппроксимацией дифференциального уравнения производится также аппроксимация граничных условий. Здесь в качестве примера приведем разностную схему, аппроксимирующую третью краевую задачу для уравнения Пуассона в прямоугольнике.

Как и ранее в прямоугольнике построим сетку

На этой сетке аппроксимируем дифференциальную задачу во внутренних узлах по рассмотренной выше центрально-разностной схеме

. Граничные условия аппроксимируем с первым порядком с помощью направленных разностей:

. В результате получена СЛАУ, содержащая уравнений ( N 1 +1)( N 2 +1)-4 относительно неизвестных ( i =0,1,…, N 1 , j =0,1,…, N 2 ) при этом угловые узлы с координатами ( i , j ), равными в вычислениях не участвуют). Как и в случае граничных условий первого рода, она имеет пятидиагональный вид и может быть решена, например, итерационным методом Либмана.

Замечание. Метод простых итераций для решения СЛАУ, возникающих при аппроксимации уравнения Пуассона (Лапласа), отличается довольно медленной сходимостью. Этот недостаток может стать существенным при использовании мелких сеток, когда число уравнений в системе становится большим.

Тема 5. Вариационные и вариационно-разностные методы Метод Ритца. Описание метода Ритца. Формулировка метода и применение для решения разностной задачи Дирихле. Построение простейших разностных уравнений диффузии с помощью метода Ритца.

Глава 4, §4.1, §4.2, §4.3, §4.4 , Уравнения математической физики, М.: Физматлит, 2003.

Тема 6. Численные методы решения интегральных уравнений Метод конечных сумм для решения интегральных уравнений Фредгольма и Вольтерра. Метод вырожденных ядер. Резольвента. Нахождение собственных значений и собственных функций. Метод наименьших квадратов. Методы Монте-Карло.

. Численные методы Монте-Карло. М.: Наука, 1973.

. Метод Монте-Карло. М.: Наука, 1985.

5. Список литературы

1 .Калиткин методы. М.: Наука, 1978.

2. , , Шувалова методы анализа. М.: Наука, 1967.

3. Бахвалов методы. Том 1, изд. 2-е, стереотипное, М.,1975.

4. Ермаков СМ., Михайлов моделирование. Изд. 2-е. М.: Наука, 1982.

5. . Численные методы Монте-Карло. М.: Наука, 1973.

6. . Метод Монте-Карло. М.: Наука, 1985.

7. Самарский разностных схем. М.: Наука, 1977.

8. Марчук вычислительной математики. М.:Наука, 1989.

9. Бабенко численного анализа. М.: Наука. 1986.

10. , , Монастырный методы. Т. 1. М.: Наука, 1976, Т. 2. М.: Наука, 1977.

11., Гулин методы. М.: Наука, 1989.

12., Рябенький B . C . Разностные схемы, введение в теорию. М: Наука, 1977.

13. Васильев Ф .П. Численные методы решения экстремальных задач. – М., 1980 – 520 с. с илл.

14. Кириллова максимума в теории оптимального управления. – Минск: Наука и техника, 1974.

15. Гамкрелидзе оптимального управления. – Тбилиси: Изд-во Тбилисского ун-та, 1977

1.Шакенов Монте-Карло и их приложения. Алматы: КазГУ,1993.

2. , , Ривин по вычислительной математике. М.: Наука, 1980.

3., , Вычислительная математика в примерах и задачах. М.: Наука, 1972.

4.Черкасова задач по численным методам. Минск: Высшая школа, 1967.

5.ВазовВ., Дж. Форсайт. Разностные методы решения дифференциальных

уравнений в частных производных. М.: ИЛ, 1963.

6.Ортега Дж., Итерационные методы решения нелинейных

систем уравнений со многими неизвестными. М.: Наука, 1975.

7. Метод конечных элементов для уравнений с частными производными. М.: Мир, 1981.

8.Трауб Дж. Итерационные методы решения уравнений. М.: Мир, 1983.

9.Михлин вопросы теории погрешностей. Л.: ЛГУ, 1988.

10.Михлин методы в математической физике. М., 1970.

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

    Владислав Грузинский 5 лет назад Просмотров:

1 Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной аппроксимации линейного одномерного по пространству уравнения теплопроводности: где T > 0 некоторая константа. u t = u + fx, t, x 0, l, t 0, T ], 1.1 x Введем в области D = <0 x l, 0 t T >равномерную сетку с шагом по координате и шагом по времени: x =, = 0, 1. = l; t j = j, j = 0, 1. M, M = T. Уравнение 1.1 содержит как производные по пространственной переменной x, так и по времени t, поэтому для построения его разностной аппроксимации придется использовать узлы сетки, соответствующие различным j. Все узлы сетки, отвечающие фиксированному j, называют j-м временным слоем. Свойства разностных схем для уравнения 1.1 зависят от того, на каком слое j по времени аппроксимируется выражение u x. Рассмотрим возможные варианты. Вариант 1: явная схема. Для аппроксимации оператора L = t x приведенный на рис. 1. в уравнении 1.1 используем шаблон, 1

2 Рис. 1: Шаблон явной схемы для уравнения теплопроводности. Соответствующий разностный оператор L 0 u имеет вид: L 0 ux, t + ux, t ux +, t ux, t + ux, t u =. Далее для краткости будем использовать следующие стандартные обозначения: u = ux, t; û = ux, t +. Тогда: u t = û u, L 0 u = u t u xx. Найдем погрешность аппроксимации разностным оператором L 0 исходного дифференциального оператора L в точке x, t. В случае достаточно гладкой функции ux, t при достаточно малых шагах и имеем: u t = ux, t + ux, t = ux, t t + O, 1. Следовательно, разностный оператор L 0 аппроксимирует дифференциальный оператор L с погрешностью O + в точке x, t: L 0 u xx = ux, t x + O. 1.3 ux, t u = t ux, t x > << >L[ux,t] +O +. Введем сеточную функцию ϕ = ϕx, t j, аппроксимирующую правую часть fx, t уравнения 1.1 на всех внутренних узлах x, t j сетки с погрешностью O +. В качестве ϕ можно взять, например ϕx, t j = fx, t j. Тогда разностное уравнение L 0 y = ϕ будет аппроксимировать исходное дифференциальное уравнение теплопроводности 1.1 с первым порядком погрешности по и вторым по.

3 Вариант. Чисто неявная схема. Используем для аппроксимации оператора L = t x приведенный на рис.. в уравнении 1.1 шаблон, Рис. : Шаблон неявной схемы для уравнения теплопроводности. Тогда разностная аппроксимация оператора L уравнения теплопроводности будет выглядеть следующим образом: L 1 ux, t + ux, t ux +, t + ux, t + + ux, t + u = = u t û xx. Рассмотрим погрешность аппроксимации разностным оператором L 1 исходного дифференциального оператора L в точках x, t, x, t +. Так как для достаточно гладкой функции ux, t справедливы равенства û xx = ux, t + x + O = ux, t x + O +, 1.4 то с учетом 1. получаем, что оператор L 1 аппроксимирует дифференциальный оператор L в уравнении 1.1 с погрешностью O + в точках x, t и x, t + : L 1 ux, t u = t ux, t x > << >L[ux,t] +O + ux, t + = ux, t + +O +. > t << x >L[ux,t+] Беря в качестве сеточной аппроксимации правой части уравнения 1.1, например, функцию ϕx, t j = fx, t j+1, получим разностное уравнение L 1 y = ϕ, аппроксимирующее 1.1 с погрешностью O +. 3

4 Вариант 3. Неявная схема с весами. Используем шаблон, приведенный на рис. 3, и линейную комбинацию операторов L 0 и L 1 для аппроксимации дифференциального оператора L: L σ u = σl1 u+1 σl0 u = σu t σû xx +1 σu t 1 σu xx = u t σû xx + 1 σu xx, где σ 0, 1. Рис. 3: Шаблон неявной схемы с весами для уравнения теплопроводности. Пользуясь равенствами 1., 1.3 и 1.4, получаем, что оператор L σ аппроксимирует исходный дифференциальный оператор L с погрешностью O + в точках x, t, x, t+ при любом σ. По определению погрешность ψx, t = L σ u Lu 1.5 аппроксимации выражения Lu разностным выражением L σ u может вычисляться в любой точке x, t, а не обязательно в каком-либо узле сетки, так как в соотношении 1.5 функция ux, t это произвольная достаточно гладкая функция непрерывных аргументов x и t. Поэтому рассмотрим погрешность аппроксимации оператором L σ дифференциального оператора L в центральной точке x, t шаблона, приведенного на рис. 3. Пользуясь для достаточно гладкой функции ux, t разложением в ряд Тейлора в окрестности точки x, t + 0.5, при малых и получаем: ux, t + ux, t u t = = u t + O, x,t+0.5 û xx = u x + O = u x,t+ x + 3 u x,t+0.5 t x + O +, x,t+0.5 u xx = u x + O = u x,t x x,t u t x + O +. x,t+0.5 4

5 Следовательно, при σ = 0.5 в точке x, t оператор L 0.5 в силу своей симметрии аппроксимирует L со вторым порядком погрешности аппроксимации по и : L σ u = ux, t + t ux, t + x > << >L[ux,t+ ] 3 ux, t + σ 1 + O +. > <<>x t 0 при σ=0.5 Для того, чтобы получить разностное уравнение, аппроксимирующее дифференциальное уравнение u t = u + fx, t x с погрешностью O + в точке x, t +, достаточно взять в качестве сеточной аппроксимации правой части fx, t этого уравнения функцию ϕx, t j = fx, t j Итак, разностное уравнение L 0.5 y = ϕ, где ϕx, t j = fx, t j + 0.5, аппроксимирует уравнение 1.1 со вторым порядком погрешности по и. Реализация явной, неявной и симметричной разностных схем для начально-краевой задачи для уравнения теплопроводности на отрезке. Пример.1. Постройте явную разностную схему для следующей начально-краевой задачи на отрезке x [0, 1]: u t = u + x, 0 6 задаче с однородными граничными условиями: v t = v, 0 7 Итак, первый вариант явной разностной схемы для задачи.1, обладающей погрешностью аппроксимации O +, имеет вид: y j = yj 1 yj + yj +1 + x, = 1. 1, j = 0, 1. M 1, y 0 3πx = sn, = 0, 1. 4 y j 0 = 0, y j yj 1 = t j, j = 0, 1. M. Рассмотрим алгоритм решения системы.4. При j = 0 значения y j известны из начального условия. Следовательно, при каждом фиксированном j = 0, 1. M 1 неизвестными являются. Найти их можно следующим образом: 1 при = 1. 1 из первого уравнения системы.4 находим = y j + y j +1 yj + yj 1 + x ; при = 0 и = пользуемся граничными условиями, учитывая, что 1 и 1 уже известны: 0 = 0, = yj t j+1; 3 переходим на новый слой по времени, увеличивая j на единицу и повторяем действия 1 и. На рис.4-6 приведены результаты решения системы.4 для = 50 и M = Рис. 4: Аналитическое решение задачи.1. Если мы хотим, чтобы явная схема аппроксимировала исходную задачу с погрешностью O +, то можно использовать тот же прием, который применялся ранее для ап- 7

8 Рис. 5: Численное решение задачи.1 с помощью явной схемы. Рис. 6: Погрешность численного решения задачи.1 с помощью явной схемы. проксимации граничного условия, содержащего производную, в краевой задаче для обыкновенного дифференциального уравнения на отрезке. Пусть ux, t решение задачи.1. Рассмотрим выражение: u x = ux, t ux, t ux, t = ux, t + O = x x ux, t = ux, t x + O. x t Заменяя в нем производную u t конечной разностью: ux, t t = ux, t ux, t + O, 8

9 получим ux, t ux, t = ux, t x ux, t ux, t x + O +. Переходя в полученном равенстве к пределу при x 1 и учитывая, что по условию u x = t, x=1 находим, что при t = t j+1 имеет место равенство: u j+1 uj+1 1 = t j+1 u j+1 uj 1 + O +. Следовательно, разностное уравнение yj+1 1 = t j+1 yj 1.5 аппроксимирует граничное условие Неймана при x = 1 с погрешностью O +. Таким образом, меняя в схеме.4 уравнение.3 на.5, мы получим схему, аппроксимирующую исходную задачу на ее решении с погрешностью O +. Уравнение.5 удобно переписать в виде: 1 = t j yj, j = 0, 1. M 1, и использовать при уже найденных 1, yj для завершения перехода на слой j + 1. Результаты расчетов по соответствующей явной схеме на той же сетке, что и в предыдущем случае, приведены на рис Рис. 7: Численное решение задачи с помощью явной схемы с граничным условием.5. 9

10 Рис. 8: Погрешность решения задачи с помощью явной схемы с граничным условием.5. Также для получения схемы, имеющей погрешность аппроксимации O +, можно аппроксимировать граничное условие Неймана при x = 1 с помощью трехточечной первой разностной производной: 3 4yj yj+1 Переписывая это уравнение в виде = t j+1, j = 0, 1. M 1. = 4 3 yj yj+1 + t j+1 3,.6 мы можем использовать его для завершения перехода на слой j + 1 при уже найденных 1 и yj+1. Погрешность вычислений по схеме с условием.6 приведена на рис. 9. Рис. 9: Погрешность решения задачи с помощью явной схемы с граничным условием.6. 10

11 Пример.. Постройте чисто неявную разностную схему для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Используем ту же сетку, что и в предыдущем примере с той лишь разницей, что соотношение шагов и теперь может быть любым. Разностная аппроксимация уравнения в соответствии с неявной схемой имеет вид: y j = yj+1 1 yj x, = 1. 1, j = 0, 1. M 1..7 Дополним разностное уравнение.7 начальными и граничными условиями на сетке. Как и в случае явной схемы, начальное условие и граничное условие Дирихле при x = 0 аппроксимируются точно: y 0 3πx = sn, = 0, 1. ; 0 = 0, j = 1. M 1. Для аппроксимации граничного условия при x = 1 используем те же три способа, что и в случае явной схемы, разобранной в предыдущем примере. Первый вариант аппроксимации граничного условия Неймана при x = 1: yj+1 1 = t j+1, j = 1. M 1. Получающаяся при этом неявная разностная схема: y 0 3πx = sn, = 0, 1. 0 = 0, j = 0, 1. M 1, y j yj+1 1 = yj+1 1 yj x, = 1. 1, j = 0, 1. M 1, = t j+1, j = 0, 1. M 1.8 имеет погрешность аппроксимации O +. Значения сеточной функции y j на нулевом слое по времени известны из начального условия, поэтому при каждом фиксированном j = 0, 1. M 1 неизвестными являются. Система уравнений, которым они удовлетворяют, имеет вид: 0 = 0, yj = yj t j+1, + yj+1 +1 = y j + x, = 1. 1,.9 11

12 то есть является системой с трехдиагональной матрицей: 0 = κ µ 1, A 1 C + B +1 = F, = 1. 1, = κ 1 + µ,.10 где κ 1 = 0, µ 1 = 0, A = B =, C = 1 +, F = y j + x, κ = 1, µ = t j+1. Очевидно, что достаточные условия устойчивости прогонки: A > 0, B > 0, C A + B, C A + B, = 1. 1, 0 κ p 1, p = 1, для системы.9 выполнены. Решая систему.9 методом прогонки и последовательно увеличивая значения j на единицу, мы полностью решим систему.8. Результаты вычислений по неявной схеме.8 в случае = M = 50 приведены на рис Рис. 10: Численное решение задачи.1 с помощью неявной схемы.8. Рис. 11: Погрешность численного решения задачи.1 с помощью неявной схемы.8. 1

13 Второй вариант аппроксимации граничного условия Неймана при x = 1: 1 = t j yj, j = 0, 1. M В этом случае для неизвестных при каждом фиксированном j получаем трехдиагональную систему вида.10, где κ = 1 1 +, µ = κ t j yj Погрешность расчетов по соответствующей неявной схеме в случае = M = 50 приведена на рис. 1.. Рис. 1: Погрешность решения задачи.1 с помощью неявной схемы с граничным условием.11. Третий вариант аппроксимации граничного условия Неймана при x = 1: = 4 3 yj yj+1 + t j+1 3 Для того, чтобы получить для неизвестных.1 систему с трехдиагональной матрицей при каждом фиксированном j, исключим из уравнения.1 неизвестное. Для этого воспользуемся уравнением.7 при = 1: yj yj yj+1 = F 1. Следовательно, = + 1 yj+1 F 1, 13

14 и уравнение.1 принимает вид: = 1 В результате для неизвестных.10, где κ = 1, 1 + F 1 + t j+1. приходим к системе с трехдиагональной матрицей вида µ = F 1 + t j+1. Погрешность расчетов по соответствующей схеме в случае = M = 50 приведена на рис. 13. Рис. 13: Погрешность численного решения задачи.1 с помощью неявной схемы с граничным условием.1. Пример.3. Постройте симметричную разностную схему схему с весом σ = 0.5 для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Аппроксимация уравнения u t = u x + x в соответствии с симметричной разностной схемой имеет вид: y j = 1 y j+1 1 yj yj 1 yj + yj +1 + x,.13 где = 1. 1, j = 0, 1. M 1. Разностное уравнение.13 аппроксимирует исходное дифференциальное уравнение теплопроводности с погрешностью O + на всех внутренних узлах сетки. 14

15 Начальное условие и условие Дирихле при x = 0 аппроксимируются так же, как и в двух рассмотренных ранее случаях. Граничное условие Неймана при x = 1 можно аппроксимировать как с первым, так и со вторым порядком по. Если в качестве аппроксимации условия при x = 1 берется разностное уравнение yj+1 1 = t j+1, j = 1. M 1, то схема будет иметь погрешность аппроксимации O +. Соответствующая система для неизвестных будет трехдиагональной: 0 = 0, A 1 C + B +1 = F, = 1. 1, = yj t j+1,.14 где A = B =, C = 1 + A, F = y j + x + yj 1 yj + yj +1. Достаточные условия устойчивости прогонки для системы.14 выполнены. Погрешность решения задачи по схеме.14 для = M = 50 приведена на рис. 14. Рис. 14: Погрешность численного решения задачи.1 с помощью симметричной схемы. Построим аппроксимацию граничного условия Неймана при x = 1 с погрешностью O +. Рассмотрим равенство: ux, t ux, t = ux, t x ux, t t x + O,.15 где ux, t решение исходной задачи.1. Положим в равенстве.15 t = t j Так как ux, t j ux, t j =

16 и получаем: 1 = 1 u j uj 1 + uj+1 ux, tj ux, t j ux, t t t=tj +0.5 u j+1 1 = ux, t x + ux, t j+1 ux, t j+1 + O = ux, t j+1 ux, t j x,t j O, u j+1 u j x + O +. Перейдем в полученном равенстве к пределу при x 1 то есть при, учитывая граничные условия задачи: 1 u j uj 1 + uj+1 uj = t j Следовательно, разностное уравнение y j yj 1 + yj+1 yj+1 1 = t j +0.5 будет аппроксимировать условие u x = t x=1 yj u j+1 uj с погрешностью O +. Соответствующая система для вид: где 0 = 0, 1 1 A 1 C + B +1 = F, = 1. 1, = κ 1 + µ, 1 κ = 1 +, µ = κ 1 + yj + O +., j = 0, 1. M 1.16 при фиксированном j имеет + t j + y j + yj Погрешность, получаемая при численном решении задачи с использованием граничного условия.16, для = M = 50 приведена на рис. 15. Такой же порядок погрешности аппроксимации можно получить, используя граничное условие = 4 3 yj yj+1 + t j Исключим из этого уравнения неизвестное, используя уравнение.13 при = 1: Так как yj yj+1 = F 1. = + 1 yj+1 F 1, 16

17 Рис. 15: Погрешность численного решения задачи.1 с помощью симметричной схемы с граничным условием.16. уравнение.18 можно переписать в виде: = F 1 + t j+1. В результате мы снова придем к системе с трехдиагональной матрицей вида.17 для неизвестных при каждом фиксированном j = 0, 1. M 1, где теперь κ = 1, µ = F 1 + t j+1. Погрешность решения по предложенной схеме при = M = 50 приведена на рис. 16. Рис. 16: Погрешность решения задачи с помощью симметричной схемы с граничным условием

18 3 Задачи для самостоятельного решения Решите аналитически и численно при помощи явной, неявной и симметричной схем начальнокраевую задачу для уравнения теплопроводности на отрезке: u t = u a + fx, t, x 0, l, t 0, T ], x ux, 0 = u 0 x, u γ 0 x + δ 0u = g 0 t, x=0 u γ 1 x + δ 1u = g 1 t, x=l где: x а a =, f = cos e t, u 0 = π x, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 0, l = π; б a = 1, f = e t x / 1, u 0 = 1 + e t x /, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 0, g 1 = e t, l = 1; в a = 0.5, f = e t, u 0 = 1 + sn 3x, γ 0 = 0, δ 0 = 1, γ 1 = 1, δ 1 = 0, g 0 = e t, g 1 = 0, l = π/; 3πx г a = 1, f = 0, u 0 = 3 x + cos, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 1, l = ; 4 д a = 0.1, f = 0, u 0 = cosπx + x + x, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 1, g 1 = 5, l =. Сравните результаты численного решения по разным схемам между собой и с аналитическим решением задачи. 18


источники:

http://pandia.ru/text/79/487/55595.php

http://docplayer.com/28166744-Raznostnaya-approksimaciya-nachalno-kraevoy-zadachi-dlya-uravneniya-teploprovodnosti-ponyatie-yavnoy-i-neyavnoy-shemy.html