Симметрические системы уравнений 11 класс

Симметрические системы уравнений и системы, содержащие однородные уравнения

Разделы: Математика

Цели урока:

  • образовательная: обучение решению систем уравнений, содержащих однородное уравнение, симметрических систем уравнений;
  • развивающая: развитие мышления, внимания, памяти, умения выделять главное;
  • воспитательная: развитие коммуникативных навыков.

Тип урока: урок изучения нового материала.

Используемые технологии обучения:

Оборудование: компьютер, мультимедийный проектор.

За неделю до урока учащиеся получают темы творческих заданий (по вариантам).
I вариант. Симметрические системы уравнений. Способы решения.
II вариант. Системы, содержащие однородное уравнение. Способы решения.

Каждый ученик, используя дополнительную учебную литературу, должен найти соответствующий учебный материал, подобрать систему уравнений и решить её.
По одному учащемуся от каждого варианта создают мультимедийные презентации по теме творческого задания. Учитель при необходимости проводит консультации для учащихся.

Содержание урока

I. Мотивация учебной деятельности учащихся

Вступительное слово учителя
На предыдущем уроке мы рассматривали решение систем уравнений методом замены неизвестных. Общего правила выбора новых переменных не существует. Однако, можно выделить два вида систем уравнений, когда есть разумный выбор переменных:

  • симметрические системы уравнений;
  • системы уравнений, одно из которых однородное.

II. Изучение нового материала

Учащиеся II варианта отчитываются о проделанной домашней работе.

1. Демонстрация слайдов мультимедийной презентации «Системы, содержащие однородное уравнение» (презентация 1).

Учащиеся записывают в тетради:

2. Работа в парах учащихся, сидящих за одной партой: учащийся II варианта объясняет соседу по парте решение системы, содержащей однородное уравнение.

Отчёт учащихся I варианта.

1. Демонстрация слайдов мультимедийной презентации «Симметрические системы уравнений» (презентация 2).

Учащиеся записывают в тетради:

2. Работа в парах учащихся, сидящих за одной партой: учащийся I варианта объясняет соседу по парте решение симметрической системы уравнений.

III. Закрепление изученного материала

Работа в группах (в группу по 4 ученика объединяются учащиеся, сидящие за соседними партами).
Каждая из 6 групп выполняет следующее задание.

Определить вид системы и решить её:

Учащиеся в группах анализируют системы, определяют их вид, затем, в ходе фронтальной работы обсуждают решения систем.

симметрическая, введем новые переменные x+y=u, xy=v

содержит однородное уравнение.

Пара чисел (0;0) не является решением системы.

IV. Контроль знаний учащихся

Самостоятельная работа по вариантам.

Решите систему уравнений:

Учащиеся сдают тетради учителю на проверку.

V. Домашнее задание

1. Выполняют все учащиеся.

Решите систему уравнений:

2.Выполняют «сильные» учащиеся.

Решите систему уравнений:

VI. Итог урока

Вопросы:
С какими видами систем уравнений вы познакомились на уроке?
Какой способ решения систем уравнений применяется при их решении?

Сообщение оценок, полученных учащимися в ходе урока.

Симметрические системы уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Симметрические системы уравнений
Автор: Гончаровская Алина
учащаяся 11 класса
МОУ Рощинской СОШ
«Образовательный центр»

Руководитель: Пятовская Людмила Петровна – учитель математики высшей категории
2008-2009 учебный год

1. Введение
2. Понятие симметрии, её основные виды
3. Решение задач при помощи симметрии
4. Симметрические системы
5. Способы решения симметрических систем. Метод замены переменных
6. Теоремы, используемые при решении симметрических систем
7. Заключение
8. Список используемой литературы

Введение
Проблема моего проекта заключается в том, что для успешной сдачи ЕГЭ требуется умение решать различные системы уравнений, а в курсе средней школы им отведено недостаточно времени, необходимого познать этот вопрос глубже.
Цель работы: подготовиться к успешной сдачи ЕГЭ.
Задачи работы:
Расширить свои знания в области математики, связанные с понятием «симметрия».
Повысить свою математическую культуру, используя понятие «симметрия» при решении систем уравнений, называемых симметрическими, а также других задач математики.

Понятие симметрии.
Симме́три́я — (др.-греч. συμμετρία), в широком смысле — неизменность при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы. Двусторонняя симметрия означает, что право и лево относительно какой-либо плоскости выглядят одинаково.

Симметрия бывает:
двусторонняя;
симметрия n-порядка;
аксиальная;
сферическая;
трансляционная

Решение задач при помощи симметрии.
Задача №1
Двое по очереди кладут одинаковые монеты на круглый стол, причём монеты не должны накрывать друг друга. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре? (Иначе говоря, у какого из игроков есть выигрышная стратегия?)
Решение. При правильной игре выигрывает тот, кто начинает — первый игрок. Вот его стратегия. Первым ходом он кладёт монету в центр стола. Затем после каждого хода второго первый кладёт монету симметрично монете, только что положенной вторым, относительно центра стола (рис. 1). Очевидно, если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, первый игрок побеждает.

Задача №2
На плоскости дана прямая l и точки A и B по одну сторону от неё. Нужно найти на прямой такую точку C, чтобы сумма длин отрезков AC и BC была минимальна.
Решение. Построим точку A’, симметричную A относительно прямой l. Заметим, что для любой точки C, лежащей на прямой l, AC=A’C. Поэтому
AC+BC=A’C+BC.
В силу неравенства треугольника сумма A’C+BC минимальна тогда и только тогда, когда точка C лежит на отрезке A’B (рис. 2). Итак, C=A’B l.

Задача №3
На плоскости дан правильный n-угольник A1A2. An, точка O — его центр (рис. 3). Найти вектор .
Решение. Введём обозначения: φ= A1OA2, — поворот на угол φ с центром в точке O (т. е. есть вектор, полученный из вектора указанным поворотом). Тогда, поскольку многоугольник A1A2. An правильный,
Как известно, сложение векторов и поворот перестановочны: если сумму нескольких векторов повернуть на угол φ и, наоборот, каждый из векторов-слагаемых повернуть на тот же угол, а затем сложить, результат будет один и тот же. Кроме того, сумма векторов не зависит от их порядка. Поэтому:
Итак, вектор не меняется при повороте на угол 0o х) система принимает вид
— х + у + у 2 = 3,
— х + 1 + у – 1 = 2,
или
— х + у + у 2 = 3,
х – у = — 2,
откуда находим х 1 = — 3, у 1 = — 1, х 2 = — 1, у 2 = 1. Вторая пара чисел принадлежит рассматриваемой области, т. е. является решением данной системы.

Если х ≥ 1, то:
а) х > у и у у и у ≥ 1 система принимает вид
х – у + у 2 = 3,
х – 1 + у – 1 = 2,
или
х – у + у 2 = 3,
х + у = 4,
откуда находим х = 1, у = 3. Эта пара чисел не принадлежит рассматриваемой области;

в) при х ≤ у (тогда у ≥ 1) система принимает вид
— х + у + у 2 = 3,
х – 1 + у – 1 = 2,
или
— х + у + у 2 = 3,
х + у = 4,
откуда находим х 1 = 5 + √8, у 1 = — 1 — √8;
х 2 = 5 — √8, у 2 = — 1 + √8. Эти пары чисел не принадлежат рассматриваемой области.
Таким образом, х 1 = — 1, у 1 = 1; х 2 = 1, у 2 = — 1.
Ответ: ( — 1; 1); ( 1; — 1).

Заключение
Математика развивает мышление человека, учит посредством логики находить разные пути решения. Так, научившись решать симметрические системы, я поняла, что использовать их можно не только для выполнения конкретных примеров, но я для решения разного рода задач.
Я думаю, что проект может принести пользу не только мне. Для тех, кто так же захочет ознакомиться с этой темой, моя работа будет являться хорошим помощником.

Симметрические системы уравнений Автор: Гончаровская Алина учащаяся 11 класса МОУ Рощинской СОШ «Образовательный центр» Руководитель: Пятовская Людмила. — презентация

Презентация была опубликована 8 лет назад пользователемЕгор Михалычев

Похожие презентации

Презентация на тему: » Симметрические системы уравнений Автор: Гончаровская Алина учащаяся 11 класса МОУ Рощинской СОШ «Образовательный центр» Руководитель: Пятовская Людмила.» — Транскрипт:

1 Симметрические системы уравнений Автор: Гончаровская Алина учащаяся 11 класса МОУ Рощинской СОШ «Образовательный центр» Руководитель: Пятовская Людмила Петровна – учитель математики высшей категории учебный год

2 Оглавление 1. ВведениеВведение 2. Понятие симметрии, её основные видыПонятие симметрии, её основные виды 3. Решение задач при помощи симметрииРешение задач при помощи симметрии 4. Симметрические системыСимметрические системы 5. Способы решения симметрических систем. Метод замены переменныхСпособы решения симметрических систем. Метод замены переменных 6. Теоремы, используемые при решении симметрических систем 7. ЗаключениеЗаключение 8. Список используемой литературыСписок используемой литературы

3 Введение Проблема моего проекта заключается в том, что для успешной сдачи ЕГЭ требуется умение решать различные системы уравнений, а в курсе средней школы им отведено недостаточно времени, необходимого познать этот вопрос глубже. Цель работы: подготовиться к успешной сдачи ЕГЭ. Задачи работы: Расширить свои знания в области математики, связанные с понятием «симметрия». Повысить свою математическую культуру, используя понятие «симметрия» при решении систем уравнений, называемых симметрическими, а также других задач математики.

4 Понятие симметрии. Симме́три́я (др.-греч. συμμετρία), в широком смысле неизменность при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы. Двусторонняя симметрия означает, что право и лево относительно какой- либо плоскости выглядят одинаково.др.-греч.

5 Симметрия бывает: двусторонняя; симметрия n-порядка; аксиальная; сферическая; трансляционная

6 Решение задач при помощи симметрии. Задача 1 Двое по очереди кладут одинаковые монеты на круглый стол, причём монеты не должны накрывать друг друга. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре? (Иначе говоря, у какого из игроков есть выигрышная стратегия?) Решение. При правильной игре выигрывает тот, кто начинает — первый игрок. Вот его стратегия. Первым ходом он кладёт монету в центр стола. Затем после каждого хода второго первый кладёт монету симметрично монете, только что положенной вторым, относительно центра стола (рис. 1). Очевидно, если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, первый игрок побеждает.

7 Задача 2 На плоскости дана прямая l и точки A и B по одну сторону от неё. Нужно найти на прямой такую точку C, чтобы сумма длин отрезков AC и BC была минимальна. Решение. Построим точку A’, симметричную A относительно прямой l. Заметим, что для любой точки C, лежащей на прямой l, AC=A’C. Поэтому AC+BC=A’C+BC. В силу неравенства треугольника сумма A’C+BC минимальна тогда и только тогда, когда точка C лежит на отрезке A’B (рис. 2). Итак, C=A’B l.

8 Задача 3 На плоскости дан правильный n- угольник A1A2. An, точка O — его центр (рис. 3). Найти вектор. Решение. Введём обозначения: φ= A1OA2, — поворот на угол φ с центром в точке O (т. е. есть вектор, полученный из вектора указанным поворотом). Тогда, поскольку многоугольник A1A2. An правильный, Как известно, сложение векторов и поворот перестановочны: если сумму нескольких векторов повернуть на угол φ и, наоборот, каждый из векторов- слагаемых повернуть на тот же угол, а затем сложить, результат будет один и тот же. Кроме того, сумма векторов не зависит от их порядка. Поэтому: Итак, вектор не меняется при повороте на угол 0o

9 Задача 4 При каких a и b система уравнений имеет ровно одно решение? Если тройка чисел (x 0,y 0,z 0 ) — решение системы, то решениями будут и тройки, полученные из неё всевозможными перестановками: (x 0,z 0,y 0 ), (y 0,x 0,z 0 ), (y 0,z 0,x 0 ), (z 0,x 0,y 0 ), (z 0,y 0,x 0 ). Решение может быть единственным только в том случае, когда x 0 =y 0 =z 0. Из первого уравнения х 0 =y 0 =z 0 =1. Подставляя эти значения x, y и z во второе и третье уравнения, получаем, что a=b=3. Осталось только проверить, что при этих a и b у системы действительно нет других решений, кроме (1,1,1).

10 Последняя задача и является примером симметрической системы. Функция f (x;y) называется симметрической, если для всех x и y выполнено равенство Например: Многочлен от двух переменных вида f(x,y) = 3x 2 – 2xy + 3y является симметрической функцией. В самом деле,

11 Примеры симметрических функций: u = x +y; u = 2x 2 -3xy+2y 2, v = xy; u = x 2 + y 2 ;

12 Способы решения симметрических систем. Симметрические системы можно решать методом замены переменных, в роли которых выступают основные симметрические многочлены. Симметрическая система двух уравнений с двумя неизвестными х и у решается подстановкой u = х + у, v = ху. х 2 + у 2 = (х + у) 2 — 2ху = u 2 — 2v, х 3 + у 3 = (х + у)(х 2 -ху + у 2 ) = u (u 2 — 2v – v) = u 3 — 3uv, х 4 + у 4 = (х 2 + у 2 ) 2 — 2х 2 у 2 = (u 2 — 2v) 2 — 2v 2 = u 4 — 4u 2 v + 2v 2, х 2 + ху + у 2 = u 2 — 2v + v = u 2 — v и т.д.

13 Пример 1: х 2 + ху + у 2 =13, х + у = 4; Пусть х + у = u, ху = v. u 2 – v = 13, u = 4; 16 – v = 13, u = 4; v = 3, u = 4; Произведем обратную замену. х + у = 4, ху = 3; х = 4 – у ху = 3; х = 4 – у, (4 – у) у = 3; х = 4 – у, у 1 = 3; у 2 = 1; х 1 = 1, х 2 = 3, у 1 = 3, у 2 = 1. Ответ: (1; 3); (3; 1).

14 Пример 2 3 х 2 у – 2ху + 3ху 2 = 78, 2х – 3ху + 2у + 8 = 0 С помощью основных симметрических многочленов система может записана в следующем виде 3uv – 2v = 78, 2u – 3v = -8. Выражая из второго уравнения u = и подставляя его в первое уравнение, получим 9v 2 – 28v – 156 = 0. Корни этого уравнения v 1 = 6 и v 2 = — позволяют найти соответствующие им значения u 1 = 5, u 2 = — из выражения u =.

15 Решим теперь следующую совокупность систем х + у = 5, и х + у = -, ху = 6 ху = -. х = 5 – у, и у = -х -, ху = 6 ху = -. х = 5 – у, и у = -х -, у (5 – у) = 6 х (-х — ) = -. х = 5 – у, и у = -х -, у 1 = 3, у 2 =2 х 1 =, х 2 = — х 1 = 2, х 2 = 3, и х 1 =, х 2 = — у 1 = 3, у 2 =2 у 1 = -, у 2 = Ответ: (2; 3), (3; 2), ( ; — ), (- ; ).

16 Пример 3: Решение: Возведем второе уравнение в куб, получим: Таким образом, по теореме Виета, иявляются корнями квадратного уравненияОтсюдаи Значит, Заметим, что мы нашли один из корней уравнения Ответ:

17 Теоремы, используемые при решении симметрических систем. Теорема 1. (о симметрических многочленах) Любой симметрический многочлен от двух переменных представим в виде функции от двух основных симметрических многочленов Другими словами, для любого симметрического многочлена f (x, y) существует такая функция двух переменных φ (u, v), что

18 Теорема 2. (о симметрических многочленах) Любой симметрический многочлен от трёх переменных представим в виде функции от трёх основных симметрических многочленов: Другими словами, для любого симметрического многочлена f (x, y) существует такая функция трёх переменных θ (u, v, w), что

19 Более сложные симметрические системы – системы, содержащие модуль: | x – y | + y 2 = 3, | x – 1 | + | y – 1 | = 2. Рассмотрим данную систему отдельно при х

х) си» title=»б) при х у х) си» > 20 б) при х у х) система принимает вид — х + у + у 2 = 3, — х у – 1 = 2, или — х + у + у 2 = 3, х – у = — 2, откуда находим х 1 = — 3, у 1 = — 1, х 2 = — 1, у 2 = 1. Вторая пара чисел принадлежит рассматриваемой области, т. е. является решением данной системы. х) си»> х) система принимает вид — х + у + у 2 = 3, — х + 1 + у – 1 = 2, или — х + у + у 2 = 3, х – у = — 2, откуда находим х 1 = — 3, у 1 = — 1, х 2 = — 1, у 2 = 1. Вторая пара чисел принадлежит рассматриваемой области, т. е. является решением данной системы.»> х) си» title=»б) при х у х) си»>

у и у у и у 21 Если х 1, то: а) х > у и у у и у 1 система принимает вид х – у + у 2 = 3, х – 1 + у – 1 = 2, или х – у + у 2 = 3, х + у = 4, откуда находим х = 1, у = 3. Эта пара чисел не принадлежит рассматриваемой области; у и у у и у у и у 1 система принимает вид х – у + у 2 = 3, х – 1 + у – 1 = 2, или х – у + у 2 = 3, х + у = 4, откуда находим х = 1, у = 3. Эта пара чисел не принадлежит рассматриваемой области;»> у и у у и у

22 в) при х у (тогда у 1) система принимает вид — х + у + у 2 = 3, х – 1 + у – 1 = 2, или — х + у + у 2 = 3, х + у = 4, откуда находим х 1 = 5 + 8, у 1 = ; х 2 = 5 — 8, у 2 = Эти пары чисел не принадлежат рассматриваемой области. Таким образом, х 1 = — 1, у 1 = 1; х 2 = 1, у 2 = — 1. Ответ: ( — 1; 1); ( 1; — 1).

23 Заключение Математика развивает мышление человека, учит посредством логики находить разные пути решения. Так, научившись решать симметрические системы, я поняла, что использовать их можно не только для выполнения конкретных примеров, но я для решения разного рода задач. Я думаю, что проект может принести пользу не только мне. Для тех, кто так же захочет ознакомиться с этой темой, моя работа будет являться хорошим помощником.

24 Список используемой литературы: Башмаков М. И., «Алгебра и начала анализа», 2-е издание, Москва, «Просвещение», 1992, 350 стр. Рудченко П. А., Яремчук Ф. П., «Алгебра и элементарные функции», справочник; издание третье, переработанное и дополненное; Киев, Наукова, Думка, 1987, 648 стр. Шарыгин И. Ф., « Математика для школьников старших классов», Москва, издательский дом «Дрофа», 1995, 490 стр. Интернет-ресурсы:


источники:

http://infourok.ru/simmetricheskie-sistemy-uravnenij-4752591.html

http://www.myshared.ru/slide/436633/