Симметрические уравнения с тремя неизвестными

Симметрические системы уравнений и системы, содержащие однородные уравнения

Разделы: Математика

Цели урока:

  • образовательная: обучение решению систем уравнений, содержащих однородное уравнение, симметрических систем уравнений;
  • развивающая: развитие мышления, внимания, памяти, умения выделять главное;
  • воспитательная: развитие коммуникативных навыков.

Тип урока: урок изучения нового материала.

Используемые технологии обучения:

Оборудование: компьютер, мультимедийный проектор.

За неделю до урока учащиеся получают темы творческих заданий (по вариантам).
I вариант. Симметрические системы уравнений. Способы решения.
II вариант. Системы, содержащие однородное уравнение. Способы решения.

Каждый ученик, используя дополнительную учебную литературу, должен найти соответствующий учебный материал, подобрать систему уравнений и решить её.
По одному учащемуся от каждого варианта создают мультимедийные презентации по теме творческого задания. Учитель при необходимости проводит консультации для учащихся.

Содержание урока

I. Мотивация учебной деятельности учащихся

Вступительное слово учителя
На предыдущем уроке мы рассматривали решение систем уравнений методом замены неизвестных. Общего правила выбора новых переменных не существует. Однако, можно выделить два вида систем уравнений, когда есть разумный выбор переменных:

  • симметрические системы уравнений;
  • системы уравнений, одно из которых однородное.

II. Изучение нового материала

Учащиеся II варианта отчитываются о проделанной домашней работе.

1. Демонстрация слайдов мультимедийной презентации «Системы, содержащие однородное уравнение» (презентация 1).

Учащиеся записывают в тетради:

2. Работа в парах учащихся, сидящих за одной партой: учащийся II варианта объясняет соседу по парте решение системы, содержащей однородное уравнение.

Отчёт учащихся I варианта.

1. Демонстрация слайдов мультимедийной презентации «Симметрические системы уравнений» (презентация 2).

Учащиеся записывают в тетради:

2. Работа в парах учащихся, сидящих за одной партой: учащийся I варианта объясняет соседу по парте решение симметрической системы уравнений.

III. Закрепление изученного материала

Работа в группах (в группу по 4 ученика объединяются учащиеся, сидящие за соседними партами).
Каждая из 6 групп выполняет следующее задание.

Определить вид системы и решить её:

Учащиеся в группах анализируют системы, определяют их вид, затем, в ходе фронтальной работы обсуждают решения систем.

симметрическая, введем новые переменные x+y=u, xy=v

содержит однородное уравнение.

Пара чисел (0;0) не является решением системы.

IV. Контроль знаний учащихся

Самостоятельная работа по вариантам.

Решите систему уравнений:

Учащиеся сдают тетради учителю на проверку.

V. Домашнее задание

1. Выполняют все учащиеся.

Решите систему уравнений:

2.Выполняют «сильные» учащиеся.

Решите систему уравнений:

VI. Итог урока

Вопросы:
С какими видами систем уравнений вы познакомились на уроке?
Какой способ решения систем уравнений применяется при их решении?

Сообщение оценок, полученных учащимися в ходе урока.

Алгебраические системы с тремя неизвестными с примерами решения

Алгебраические системы с тремя неизвестными

Для систем с тремя неизвестными определения понятий равносильности и следствия, а также свойства преобразований систем формулируются аналогично тому, как это было сделано для систем с двумя неизвестными.

Будем рассматривать системы вида

где , , являются либо многочленами от , , , либо могут быть представлены в виде отношения многочленов.

Сформулируем для систем уравнений с тремя неизвестными следующие утверждения, которые могут оказаться полезными при решении систем.

Если , где и —многочлены, то система (1) равносильна совокупности систем

и поэтому множество решений системы (1) в этом случае есть объединение множеств решений систем (2) и (3).

2°. Если уравнение

есть следствие системы (1), то система

равносильна системе (1), т. е. при добавлении к системе (1) еще одного уравнения (4), являющегося следствием этой системы, получается система, равносильная системе (1).

. Если уравнение (4) — следствие системы (1), причем где и —многочлены, то система (1) равносильна совокупности систем

. Система (1) равносильна каждой из следующих систем:

5°. Если уравнение равносильно уравнению где — многочлен от и , то система (1) равносильна системе

Это утверждение лежит в основе метода исключения неизвестных: система (1) сводится к системе (5), (6) с двумя неизвестными.

Прежде чем переходить к примерам алгебраических систем с тремя неизвестными, отметим, что нет общих рецептов для нахождения решений систем. Каждый раз нужно учитывать конкретные особенности рассматриваемой системы. Можно дать только общий совет: решайте побольше задач.

Рассмотрим сначала системы с тремя неизвестными, которые сводятся к кубическим уравнениям.

К таким системам относятся системы симметрических алгебраических уравнений, т.е. системы вида (1), где , , — многочлены, каждый из которых не меняется, если поменять местами любую пару из переменных , , .

В этом случае удобно ввести следующие переменные:

Простейший пример системы рассматриваемого вида — система

Система (7) и кубическое уравнение

связаны следующим образом.

Если , , — корни уравнения (8), то система (7) имеет шесть решений: получаемых всевозможными перестановками трех чисел , , . Обратно, если решение системы (7), то , , — корни уравнения (8).

Доказательство этого утверждения основано на использовании формул Виета для корней уравнения (8):

Для сведения к системам (7) систем симметрических уравнений вида

можно использовать следующие тождества:

Примеры с решениями

Пример №186.

Решить систему уравнений

Решение:

Используя уравнения (12), (13) и тождество (9), получаем

Применяя формулу (11) и учитывая равенства (13)-(15), находим

Следовательно, исходная система равносильна системе вида (7), в которой , а уравнение (8) имеет вид

Корни этого уравнения — числа Поэтому система имеет шесть решений, получаемых перестановкой чисел

Ответ.

Обратимся теперь к системам с тремя неизвестными, которые не являются симметрическими.

Пример №187.

Решить систему уравнений

Решение:

Так как правые части уравнений отличны от нуля, то Полагая получаем систему линейных уравнений

Сложив уравнения системы (16), находим

Из (16) и (17) получаем т. е.

Перемножив почленно уравнения системы (18), которая равносильна исходной, имеем откуда

Следовательно, исходная система равносильна совокупности систем (18), (19) и (18), (20), которые имеют решения и соответственно.

Ответ.

Пример №188.

Решить систему уравнений

Решение:

Будем решать систему методом исключения неизвестных и сведением, в конечном счете, к одному уравнению с одним неизвестным. Складывая почленно уравнения (21) и (23), получаем

Так как на основании равенства (24), то из этого равенства следует, что

Запишем далее уравнение (22) в виде

Исключив из уравнений (24) и (26), получаем откуда

Заметим, что система (27), (25), (21) равносильна системе (21)— (23). Подставляя выражения для и из формул (27) и (25) в уравнение (21), получаем

или откуда Соответствующие значения и найдем по формулам (27) и (25).

Ответ.

Пример №189.

Решить систему уравнений

Решение:

Перемножив уравнения системы (28), получаем

Уравнение (29) является следствием системы (28), которая равносильна системе

Уравнения (30), (31), (32) имеют решения соответственно. С учетом равенства (29) находим четыре решения системы (28).

Ответ.

Пример №190.

Найти решения системы уравнений

Решение:

Вычитая из уравнения (34) уравнение (33), получаем

Далее, вычитая из уравнения (35) уравнение (33), находим

Наконец, складывая уравнения (34) и (35), получаем

Система (37)-(39) равносильна системе (33)-(35), а при условии (36) — системе линейных уравнений

имеющей единственное решение

Ответ.

Пример №191.

Решить систему уравнений

Решение:

Вычтем из уравнения (41) уравнение (40) и преобразуем полученное уравнение к виду

Выполнив ту же операцию с уравнениями (42) и (41), имеем

Система (43), (44), (42), равносильная системе (40)-(42), распадается на следующие четыре системы:

Полученные системы легко решаются методом исключения неизвестных. Объединив решения этих систем, найдем все решения исходной системы.

Ответ.

Пример №192.

Решить систему уравнений

Решение:

Решим эту систему как линейную относительно Для этого сложим попарно уравнения системы (45) и получим систему

Перемножив уравнения системы (46) и полагая находим или откуда т. е.

Система (45) в силу утверждения 3° равносильна совокупности систем (46), (47) и (46), (48), каждая из которых имеет единственное решение.

Ответ.

Пример №193.

Решить систему уравнений

Решение:

Если , то из системы (49) следует, что , а может принимать любые значения. Аналогично, если , то , — любое. Таким образом, система имеет бесконечное множество решений вида

Будем искать решения системы (49) такие, что . Умножив первое уравнение системы (49) на , а третье — на и сложив результаты, получим

Прибавив к уравнению (51) второе уравнение системы (49), умноженное на :, находим

Каждое из уравнений (51), (52) является следствием системы (49).

Так как , , — действительные числа (требуется найти действительные решения системы), то уравнение (52) равносильно уравнению

Исключая из уравнений (53) и (51), получаем

Уравнения (53) и (54) являются следствиями системы (49), а уравнение (54) равносильно совокупности уравнений

Из (55) и (53) следует, что , а из системы (49) при и находим Полученное решение содержится среди решений (50).

Из (56) и (53) следует, что Подставляя в систему (49), находим решения и

Ответ. — любое действительное число;

Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:

Возможно вам будут полезны эти страницы:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Симметрические системы уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Симметрические системы уравнений
Автор: Гончаровская Алина
учащаяся 11 класса
МОУ Рощинской СОШ
«Образовательный центр»

Руководитель: Пятовская Людмила Петровна – учитель математики высшей категории
2008-2009 учебный год

1. Введение
2. Понятие симметрии, её основные виды
3. Решение задач при помощи симметрии
4. Симметрические системы
5. Способы решения симметрических систем. Метод замены переменных
6. Теоремы, используемые при решении симметрических систем
7. Заключение
8. Список используемой литературы

Введение
Проблема моего проекта заключается в том, что для успешной сдачи ЕГЭ требуется умение решать различные системы уравнений, а в курсе средней школы им отведено недостаточно времени, необходимого познать этот вопрос глубже.
Цель работы: подготовиться к успешной сдачи ЕГЭ.
Задачи работы:
Расширить свои знания в области математики, связанные с понятием «симметрия».
Повысить свою математическую культуру, используя понятие «симметрия» при решении систем уравнений, называемых симметрическими, а также других задач математики.

Понятие симметрии.
Симме́три́я — (др.-греч. συμμετρία), в широком смысле — неизменность при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы. Двусторонняя симметрия означает, что право и лево относительно какой-либо плоскости выглядят одинаково.

Симметрия бывает:
двусторонняя;
симметрия n-порядка;
аксиальная;
сферическая;
трансляционная

Решение задач при помощи симметрии.
Задача №1
Двое по очереди кладут одинаковые монеты на круглый стол, причём монеты не должны накрывать друг друга. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре? (Иначе говоря, у какого из игроков есть выигрышная стратегия?)
Решение. При правильной игре выигрывает тот, кто начинает — первый игрок. Вот его стратегия. Первым ходом он кладёт монету в центр стола. Затем после каждого хода второго первый кладёт монету симметрично монете, только что положенной вторым, относительно центра стола (рис. 1). Очевидно, если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, первый игрок побеждает.

Задача №2
На плоскости дана прямая l и точки A и B по одну сторону от неё. Нужно найти на прямой такую точку C, чтобы сумма длин отрезков AC и BC была минимальна.
Решение. Построим точку A’, симметричную A относительно прямой l. Заметим, что для любой точки C, лежащей на прямой l, AC=A’C. Поэтому
AC+BC=A’C+BC.
В силу неравенства треугольника сумма A’C+BC минимальна тогда и только тогда, когда точка C лежит на отрезке A’B (рис. 2). Итак, C=A’B l.

Задача №3
На плоскости дан правильный n-угольник A1A2. An, точка O — его центр (рис. 3). Найти вектор .
Решение. Введём обозначения: φ= A1OA2, — поворот на угол φ с центром в точке O (т. е. есть вектор, полученный из вектора указанным поворотом). Тогда, поскольку многоугольник A1A2. An правильный,
Как известно, сложение векторов и поворот перестановочны: если сумму нескольких векторов повернуть на угол φ и, наоборот, каждый из векторов-слагаемых повернуть на тот же угол, а затем сложить, результат будет один и тот же. Кроме того, сумма векторов не зависит от их порядка. Поэтому:
Итак, вектор не меняется при повороте на угол 0o х) система принимает вид
— х + у + у 2 = 3,
— х + 1 + у – 1 = 2,
или
— х + у + у 2 = 3,
х – у = — 2,
откуда находим х 1 = — 3, у 1 = — 1, х 2 = — 1, у 2 = 1. Вторая пара чисел принадлежит рассматриваемой области, т. е. является решением данной системы.

Если х ≥ 1, то:
а) х > у и у у и у ≥ 1 система принимает вид
х – у + у 2 = 3,
х – 1 + у – 1 = 2,
или
х – у + у 2 = 3,
х + у = 4,
откуда находим х = 1, у = 3. Эта пара чисел не принадлежит рассматриваемой области;

в) при х ≤ у (тогда у ≥ 1) система принимает вид
— х + у + у 2 = 3,
х – 1 + у – 1 = 2,
или
— х + у + у 2 = 3,
х + у = 4,
откуда находим х 1 = 5 + √8, у 1 = — 1 — √8;
х 2 = 5 — √8, у 2 = — 1 + √8. Эти пары чисел не принадлежат рассматриваемой области.
Таким образом, х 1 = — 1, у 1 = 1; х 2 = 1, у 2 = — 1.
Ответ: ( — 1; 1); ( 1; — 1).

Заключение
Математика развивает мышление человека, учит посредством логики находить разные пути решения. Так, научившись решать симметрические системы, я поняла, что использовать их можно не только для выполнения конкретных примеров, но я для решения разного рода задач.
Я думаю, что проект может принести пользу не только мне. Для тех, кто так же захочет ознакомиться с этой темой, моя работа будет являться хорошим помощником.


источники:

http://lfirmal.com/algebraicheskie-sistemyi-s-tremya-neizvestnyimi-s-primerami-resheniya/

http://infourok.ru/simmetricheskie-sistemy-uravnenij-4752591.html