Система дифференциальных уравнений с y1 и y2

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Системы дифференциальных уравнений

Этот раздел мы решили посвятить решению систем дифференциальных уравнений простейшего вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2 , в которых a 1 , b 1 , c 1 , a 2 , b 2 , c 2 — некоторые действительные числа. Наиболее эффективным для решения таких систем уравнений является метод интегрирования. Также рассмотрим решение примера по теме.

Решением системы дифференциальных уравнений будет являться пара функций x ( t ) и y ( t ) , которая способна обратить в тождество оба уравнения системы.

Рассмотрим метод интегрирования системы ДУ d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2 . Выразим х из 2 -го уравнения системы для того, чтобы исключить неизвестную функцию x ( t ) из 1 -го уравнения:

d y d t = a 2 x + b 2 y + c 2 ⇒ x = 1 a 2 d y d t — b 2 y — c 2

Выполним дифференцирование 2 -го уравнения по t и разрешим его уравнение относительно d x d t :

d 2 y d t 2 = a 2 d x d t + b 2 d y d t ⇒ d x d t = 1 a 2 d 2 y d t 2 — b 2 d y d t

Теперь подставим результат предыдущих вычислений в 1 -е уравнение системы:

d x d t = a 1 x + b 1 y + c 1 ⇒ 1 a 2 d 2 y d t 2 — b 2 d y d t = a 1 a 2 d y d t — b 2 y — c 2 + b 1 y + c 1 ⇔ d 2 y d t 2 — ( a 1 + b 2 ) · d y d t + ( a 1 · b 2 — a 2 · b 1 ) · y = a 2 · c 1 — a 1 · c 2

Так мы исключили неизвестную функцию x ( t ) и получили линейное неоднородное ДУ 2 -го порядка с постоянными коэффициентами. Найдем решение этого уравнения y ( t ) и подставим его во 2 -е уравнение системы. Найдем x ( t ) . Будем считать, что на этом решение системы уравнений будет закончено.

Найдите решение системы дифференциальных уравнений d x d t = x — 1 d y d t = x + 2 y — 3

Начнем с первого уравнения системы. Разрешим его относительно x :

x = d y d t — 2 y + 3

Теперь выполним дифференцирование 2 -го уравнения системы, после чего разрешим его относительно d x d t : d 2 y d t 2 = d x d t + 2 d y d t ⇒ d x d t = d 2 y d t 2 — 2 d y d t

Полученный в ходе вычислений результат мы можем подставить в 1 -е уравнение системы ДУ:

d x d t = x — 1 d 2 y d t 2 — 2 d y d t = d y d t — 2 y + 3 — 1 d 2 y d t 2 — 3 d y d t + 2 y = 2

В результате преобразований мы получили линейное неоднородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами d 2 y d t 2 — 3 d y d t + 2 y = 2 . Если мы найдем его общее решение, то получим функцию y ( t ) .

Общее решение соответствующего ЛОДУ y 0 мы можем найти путем вычислений корней характеристического уравнения k 2 — 3 k + 2 = 0 :

D = 3 2 — 4 · 2 = 1 k 1 = 3 — 1 2 = 1 k 2 = 3 + 1 2 = 2

Корни, которые мы получили, являются действительными и различными. В связи с этим общее решение ЛОДУ будет иметь вид y 0 = C 1 · e t + C 2 · e 2 t .

Теперь найдем частное решение линейного неоднородного ДУ y

d 2 y d t 2 — 3 d y d t + 2 y = 2

Правая часть записи уравнения представляет собой многочлен нулевой степени. Это значит, что частное решение будем искать в виде y

= A , где А – это неопределенный коэффициент.

Определить неопределенный коэффициент мы можем из равенства d 2 y

= 2 :
d 2 ( A ) d t 2 — 3 d ( A ) d t + 2 A = 2 ⇒ 2 A = 2 ⇒ A = 1

Таким образом, y

= 1 и y ( t ) = y 0 + y

= C 1 · e t + C 2 · e 2 t + 1 . Одну неизвестную функцию мы нашли.

Теперь подставим найденную функцию во 2 -е уравнение системы ДУ и разрешим новое уравнение относительно x ( t ) :
d ( C 1 · e t + C 2 · e 2 t + 1 ) d t = x + 2 · ( C 1 · e t + C 2 · e 2 t + 1 ) — 3 C 1 · e t + 2 C 2 · e 2 t = x + 2 C 1 · e t + 2 C 2 · e 2 t — 1 x = — C 1 · e t + 1

Так мы вычислили вторую неизвестную функцию x ( t ) = — C 1 · e t + 1 .

Ответ: x ( t ) = — C 1 · e t + 1 y ( t ) = C 1 · e t + C 2 · e 2 t + 1

Системы дифференциальных уравнений

Если ввести в рассмотрение векторы y=(y1,y2,…,yn) T , f=(f1,f2,…,fn) T и вспомнить [1,3], что производная вектор-функции по скалярному аргументу вычисляется по формуле y’=(y1‘, y2‘,…, yn‘) T , то систему (40) можно записать в векторной форме y’=f(x,y), которая по виду совпадает с записью дифференциального уравнения первого порядка.

Для системы обыкновенных дифференциальных уравнений (40) можно поставить задачу Коши: найти решение (y1,y2,…,yn) T системы (40), удовлетворяющее начальным условиям
(y1(x0), y2(x0), . , yn(x0)) T = (y1 0 , y2 0 , . , yn 0 ) T , (41)
В векторной форме условия (41) имеют вид y(x0)=y0.
Так же, как и для дифференциальных уравнений, для систем дифференциальных уравнений справедлива теорема существования и единственности.

Теорема. Если все функции fi, i=1,n, непрерывны по x и удовлетворяют условию Липшица по yi, i=1,n, то решение задачи Коши (40), (41) существует и единственно.
Доказательство этого результата опустим.
Если функции fi, i=1,n не зависят от x, то система (40) называется автономной. В этом случае обычно вместо x пишут t и систему записывают в виде

или в векторной форме y’=f(y). Если трактовать независимую переменную как время, то автономные системы отличаются тем, что их поведение не зависит от начала отсчёта переменной t, а зависит от начальной точки и времени, прошедшего с начала процесса. Действительно, сделав замену переменных τ=t-t0, получим

В общем случае для решения систем имеются методы интегрируемых комбинаций и исключения неизвестных. Как указывалось ранее, любое уравнение порядка n можно свести к системе n уравнений в нормальной форме. Возможна и обратная процедура. На этой идее и основан метод исключения неизвестных. Разберём его на примерах.

1. Для системы дифференциальных уравнений

выражая y из второго уравнения, имеем y=-x’+cost, y’=-x»-sint. Подставляя в первое уравнение и приводя подобные, получаем уравнение x»+4x’+3x=0. Это линейное уравнение второго порядка с постоянными коэффициентами. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны r1 = -3, r2 = -1.

Поэтому x=C1e -3 t + C2e — t . Подставляя в выражение для y, получаем y=3C1e -3 t + C2e — t + cost или в векторной форме .

2. Найдём решение системы дифференциальных уравнений

Выражая из первого уравнения y получаем . Следовательно, и, подставляя во второе уравнение, имеем x»+9x=0. Это линейное уравнение второго порядка с постоянными коэффициентами. Корни его характеристического полинома r 2 +9 равны r1,2=±3i Поэтому общее решение полученного уравнения есть x=C1cos3t + C2sin3t. Подставляя в выражение для y, получаем или в векторной форме

Системы линейных уравнений

Будем, по возможности, пользоваться матричной формой записи. Если b(x)=0, то получаем соответствующую систему однородных уравнений

Для систем линейных уравнений строится теория, полностью эквивалентная теории линейных уравнений порядка n. В частности, справедлива теорема о наложении решений и её следствия. В том числе и теорема о том, что множество решений однородной системы (43) образует линейное подпространство в пространстве дифференцируемых вектор-функций.
Так же как для векторов [1,2] и систем функций, для систем вектор-функций вводятся понятия их линейной зависимости и линейной независимости.

Определение . Система вектор-функций y 1 ,y 2 ,…,y m называется линейно зависимой на отрезке [a,b], если существуют числа α1, α2,…, αm, , не все из которых равны нулю, такие, что

всюду на [a,b], и линейно независимой, если такого ненулевого набора не существует.

Рассмотрим совокупность вектор-функций y 1 ,y 2 ,…,y m . Определитель, составленный из их координат,

называется определителем Вронского, или вронскианом системы вектор-функций y 1 ,y 2 ,…,y m .
Определитель Вронского служит индикатором линейной зависимости системы вектор-функций.

Теорема . Если система вектор-функций линейно зависима, то её определитель Вронского W(x) равен нулю.

Теорема . Если y 1 ,y 2 ,…,y m — линейно независимая совокупность решений системы однородных уравнений y’=A(x)y, то её определитель Вронского W(x) отличен от нуля для всех x∈[α, β].
Удостоверимся в существовании базиса в пространстве решений системы уравнений y’=A(x)y.

Теорема . Для любой однородной системы линейных дифференциальных уравнений y’=A(x)y порядка n существует система n линейно независимых решений этого уравнения.
Доказательство. Возьмём матрицу
(44)
с определителем, отличным от нуля. Тогда строки и столбцы этой матрицы линейно независимы. Найдём такие решения y j (x), j=1,2. n, системы уравнений y’=A(x)y, чтобы выполнялись соотношения yk j (x0)=qk j , k=1,2. n. По теореме существования и единственности такой набор решений существует. Найденная система решений линейно независима, так как её определитель Вронского в точке x0 совпадает с определителем матрицы (44). Теорема доказана.
Матрицу (44) можно взять единичную.

Теорема (о виде общего решения однородной системы линейных дифференциальных уравнений). Если y 1 ,y 2 ,…,y n — линейно независимая совокупность решений однородной системы уравнений y’=A(x)y, то любое решение этой системы есть линейная комбинация решений y 1 ,y 2 ,…,y n , то есть

и, следовательно, y 1 ,y 2 ,…,y n — базис пространства решений системы уравнений y’=A(x)y.


источники:

http://zaochnik.com/spravochnik/matematika/differentsialnye-uravnenija/sistemy-differentsialnyh-uravnenij/

http://math.semestr.ru/math/lec_diffur_12.php