Система иррациональных уравнений за 10 класс

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Методы решения иррациональных уравнений
материал для подготовки к егэ (гиа) по математике (10 класс)

Приведенны примеры решения иррациональных уравнений различными методами

Скачать:

ВложениеРазмер
metody_resheniya_irratsionalnyh_uravneniy.ppt703 КБ
metody_resheniya_irratsionalnyh_uraneniy.doc465 КБ

Предварительный просмотр:

Подписи к слайдам:

Методы решения иррациональных уравнений Учитель математики: Орлова С.Г. МАОУ «Полесская СОШ»

Метод возведения в степень Пример 1. 5х – 1 = 4х 2 – 4х + 1 4х 2 – 9х + 2 = 0 х 1,2 = х 1 = 2 х 2 = Ответ: 2. посторонний корень Проверка: х =

Пример 2. 8х + 1 + 2х – 2 – 2 = 7х + 4 + 3х – 5 – 2 (8х + 1)(2х – 2) = (7х + 4)(3х – 5) х = 3; х = — Проверка : х= — посторонний корень Ответ: 3.

Пример 3. Ответ: . х 3х 2 т.к. 3х 2 . 3х 2 = 2 х 1 = — х 2 = , то Проверка : х = — посторонний корень

Метод составления смешанной системы Пример. Ответ: 7. Решение уравнений вида Решение уравнений вида

Пример 1. Пусть ; а 2 -2а – 3 =0 а 1 = -1 не удовлетворяет условию а 2 = 3 х + 32 = 81 х = 49 Ответ: 49. Метод введения новой переменной

Пример 2. Пусть х = у 2 + 1 |y – 2| + |y – 3| = 1

1) у = 2 Решений нет 2) 1 = 1 3) у = 3 Решений нет Ответ: [5; 10]

Метод разложения подкоренного выражения на множители Пример. 2х – 1 = 0 или х = 0,5 решений нет Ответ: 0,5. Проверка: верно

Метод умножения на сопряженное выражение Пример. (1) = 7 3х 2 + 5х + 8 = 16 3х 2 + 5х – 8 = 0 х 1 = х 2 = 1 ; 1. Ответ: Проверкой убеждаемся, что х 1 , х 2 — корни уравнения . | . ( ) Сложим данное уравнение с уравнением (1), получим: | : 2

Метод замены иррациональных уравнений системой рациональных уравнений Пример 1. a 3 + 1 – 2a + a 2 = 1 a 3 + a 2 – 2a = 0 a 1 = 0 a 2 = 1 a 3 = — 2 х = — 1 х = — 2 х = 7 Ответ: -2; -1; 7.

Использование монотонности Теорема. Если функция y = f(x) строго возрастает (убывает) на некотором промежутке I, то уравнение f(x) = С, где С – некоторое действительное число, имеет не более одного решения на промежутке I. Пример. f(x) = f(x) = 8 x = 4 возрастает на D(f) = [ ) Ответ: 4.

Самостоятельная работа Задание: решите уравнение.

При решении уравнений вы можете воспользоваться подсказкой метода решения или, решив уравнение, проверить ответ ? Ответ

Пример 3. ? Ответ

Пример 4. ? Ответ

Пример 5. ? Ответ

Пример 6. ? Ответ

Пример 7. ? Ответ

Пример 8. ? Ответ

Пример 1. х Т.к. , то 2х = 4 х = 2 П оказатели степени образуют бесконечную убывающую геометрическую прогрессию, сумму которой можно найти по формуле Проверка: next

Пример 2 . Пусть y > 0. Получим уравнение Тогда у 2 + 3у – 4 = 0 у 1 = 1, у 2 = -4 (не удовлетворяет условию y > 0) 2 – х = 2 + х х = 0 Проверка показывает, что 0 является корнем уравнения. Ответ: 0. next

х = 4 Ответ: 4. Пример 3. next

(1) | ∙ х=0 или Сложим данное уравнение с уравнением (1), получим Ответ: -3; 0; 3. Пример 4. next

Пример 5. 1) 2) х – 3 = 27 х – 3 = -64 х = 30 х = -61 Ответ: -61; 30. next

Пример 6 . Пусть 2х – 5 = у 2 |  |y + 1| + |y + 3| = 14, т.к. у  0, то | y + 1| = y + 1, |y + 3| = y + 3 у + 1 + у + 3 = 14 2у = 10 у = 5 Тогда х = 15. Ответ: 15. next

Пример 7. Пусть f(x) = D(f) = Т.к. данная функция строго возрастает на D(f), то уравнение f(x) = 2 имеет не более одного корня на указанном промежутке. Подбором определяем: х = 1. Ответ: 1. next

Метод возведения в степень х 3х 2 т.к. 3х 2 . 3х 2 = 2 х 1 = — х 2 = Ответ: . , то Проверка : х = — посторонний корень назад

Пусть ; а 2 -2а – 3 =0 а 1 = -1 не удовлетворяет условию а 2 = 3 х + 32 = 81 х = 49 Ответ: 49. Метод введения новой переменной назад

Метод составления смешанной системы Решение уравнений вида назад

Метод умножения на сопряженное выражение (1) = 7 3х 2 + 5х + 8 = 16 3х 2 + 5х – 8 = 0 х 1 = х 2 = 1 | . ; 1. Ответ: Проверкой убеждаемся, что х 1 , х 2 — корни уравнения . ( ) назад

Метод замены иррациональных уравнений системой рациональных уравнений a 3 + 1 – 2a + a 2 = 1 a 3 + a 2 – 2a = 0 a 1 = 0 a 2 = 1 a 3 = — 2 х = — 1 х = — 2 х = 7 Ответ: -2; -1; 7. назад

Использование монотонности Теорема. Если функция y = f(x) строго возрастает (убывает) на некотором промежутке I, то уравнение f(x) = С, где С – некоторое действительное число, имеет не более одного решения на промежутке I. f(x) = f(x) = 8 x = 4 Пример. возрастает на D(f) = [ ) Ответ: 4. назад

Метод введения новой переменной . Пусть х = у 2 + 1 |y – 2| + |y – 3| = 1

1) у = 2 Решений нет 2) 1 = 1 3) у = 3 Решений нет Ответ: [5; 10] назад

Метод разложения подкоренного выражения на множители Пример. 2х – 1 = 0 или х = 0,5 решений нет Ответ: 0,5. Проверка: верно назад

или х = 1 D Орлова Светлана Григорьевна, учитель математики

Методы решения иррациональных уравнений.

  • Образовательная –познакомить учащихся с нестандартными методами решения иррациональных уравнений; систематизировать знания учащихся о методах решения иррациональных уравнений, способствовать формированию умений классифицировать иррациональные уравнения по методам решений, научить применять эти методы, выбирать рациональный путь решения.
  • Развивающая –способствовать развитию математического кругозора, логического мышления.
  • Воспитательная – содействовать воспитанию интереса к иррациональным уравнениям, воспитывать чувство коллективизма, самоконтроля, ответственности.
  1. Повторить определение и основные методы решения иррациональных уравнений;
  2. Продемонстрировать нестандартные методы решения иррациональных уравнений; формировать умение выбирать рациональные пути решения;
  3. Освоение всеми учащимися алгоритмов решения иррациональных уравнений, закрепление теоретических знаний при решении конкретных примеров;
  4. Развитие у учащихся логического мышления в процессе поиска рациональных методов и алгоритмов решения;
  5. Развитие культуры научных и учебных взаимоотношений между учениками и между учениками и учителем; воспитание навыков совместного решения задач.
  • Тип урока: комбинированный
  • Информационно- иллюстративный;
  • репродуктивный;
  • проблемный диалог;
  • частично-поисковый;
  • системные обобщения.

Формы организации учебной деятельности:

  • Фронтальная,
  • групповая,
  • самопроверка,
  • взаимопроверка,
  • коллективные способы обучения.

Оборудование урока: компьютер, проектор, карточки с заданием, лист учета знаний.

Продолжительность занятия : 2 урока по 45 минут.

  1. Организационный момент. Постановка цели, мотивация.
  2. Актуализация опорных знаний, проверка домашней работы.
  3. Изучение нового материала.
  4. Закрепление изученного материала на данном уроке и ранее пройденного, связанного с новым.
  5. Подведение итогов и результатов урока. Рефлексия.
  6. Задание на дом.
  1. Организационный момент. Постановка цели, мотивация.
  2. Актуализация опорных знаний проводится в форме беседы по лекционному материалу по данной теме с использованием компьютерной презентации. Проверка домашнего задания.
  • Определение иррационального уравнения.

Уравнение, содержащее переменные под знаком корня или дробной степени, называется иррациональным.

Назовите иррациональные уравнения:

  • Что значит решить иррациональное уравнение?

Это значит найти все такие значения переменной, при которых уравнение превращается в верное равенство, либо доказать, что таких значений не существует .

  • Основные методы решения иррациональных уравнений.
  1. Уединение радикала. Возведение в степень.

a) При решении иррационального уравнения с радикалом четной степени возможны два пути :

  1. использование равносильных преобразований

для уравнения вида

для уравнения вида

  1. после возведения в степень выполнение проверки , так как возможно появление посторонних корней

b) При решении иррационального уравнения с радикалом нечетной степени возведение в нечетную степень правой и левой части уравнения всегда приводит к равносильному уравнению и потеря корней или их приобретения происходить не может.

Пример 1:

Пример 2:

Пример 3:

Проверка: x=2 x=5

— посторонний корень

Если радикалов несколько, то уравнение возводить в степень приходится возводить неоднократно.

Пример 4:

Проверка показывает, что оба корня подходят.

Ответ:

  1. Метод введения вспомогательного неизвестного или “метод замены

Пример 5:

Сделаем замену причём тогда

не удовлетворяет условию

Возвращаемся к замене:

Проверка показывает, что оба корня подходят.

Иногда удобно ввести не одну, а несколько переменных.

Пример 6: .

Заметим, что знаки х под радикалом различные. Введем обозначение

, .

Тогда,

Выполним почленное сложение обеих частей уравнения .

Имеем систему уравнений

Т.к. а + в = 4, то

Значит: 9 – x = 8 , х = 1.

  1. Метод разложения на множители или расщепления.
  • Произведение равно нулю тогда и только тогда, когда хотя бы один из входящих в него сомножителей равен нулю, а остальные при этом имеют смысл.

Пример 7:

  1. Изучение нового материала.

Нестандартные методы решения иррациональных уравнений.

  1. Умножение на сопряжённое выражение.
  2. Переход к модулю.
  3. Использование свойств функции:
  • Область определения функции (ОДЗ)
  • Область значения функции
  • Свойство ограниченности функции (метод оценок)
  • Свойство монотонности
  • Использование суперпозиций функций
  • Умножение на сопряжённое выражение.

Воспользуемся формулой

Пример 8:

Умножим обе части уравнения на сопряжённое выражение:

Проверка показывает, что число является корнем.

Ответ:

Для этого метода воспользуемся тождеством:

Пример 9:

  • Если , то , тогда

тогда

  • Если , тогда

  • Если , тогда , а

  • Использование свойств функции:
  • Область определения функции (ОДЗ)

Иногда нахождение области определения функций, входящих в уравнение, существенно облегчает его решение.

Пример 10:

ОДЗ: ОДЗ: x=0 и x=1

Проверка показывает, что только x=1 является корнем.

Ответ:

Пример 11:

, тогда

Тогда невозможно.

Ответ: корней нет.

  • Область значений функции

Пример 12:

Данное уравнение не имеет решений, так как его левая часть- функция может принимать только неотрицательные значения.

Ответ: корней нет

Пример 13:

Учитывая то, что левая часть уравнения – функция может принимать только неотрицательные значения, решим неравенство:

неравенство решений не имеет, тогда и исходное уравнение тоже.

Ответ: корней нет

  • Свойство ограниченности функции (метод оценок)
  • Если и , то

Пример 14:

Заметим, что , т.е. , а

Проверка показывает, что это значение является и корнем второго уравнения.

Ответ:

  • Свойство монотонности
  • Пусть — функция, возрастающая (убывающая) на некотором промежутке I . Тогда уравнение имеет на промежутке I не более одного корня.
  • Пусть — функция, возрастающая на некотором промежутке I , а функция — убывающая на этом промежутке. Тогда уравнение имеет на промежутке I . не более одного корня

Пример 15: .

Рассмотрим функции и .

монотонно возрастает, а — убывает, следовательно, уравнение имеет не более одного корня.

Значение корня легко найти подбором:

Ответ:

Пример 16:

Функция возрастает на своей области определения, как сумма двух возрастающих функций, следовательно, уравнение имеет не более одного корня. Так как , то — единственный корень .

Ответ:

  • Использование суперпозиций функций
  • Если — монотонно возрастающая функция, то уравнения и равносильны.

Пример 17:

Запишем уравнение в виде

Рассмотрим функцию — монотонно возрастающую, тогда уравнение имеет вид . Оно равносильно уравнению

Сделаем замену

не удовлетворяет условию

Ответ:

  1. Закрепление изученного материала на данном уроке и ранее пройденного, связанного с новым.

Решение уравнений в группах по 6 человек.

Ребята получают карточку с заданием. Решение уравнений обсуждают вместе, записывают его.

После выполнения группами заданий проводится взаимопроверка. Группы меняются заданиями с решениями по кругу:

2 3 4

Учащиеся групп обсуждают решение, исправляют ошибки и выставляют оценки.

Потом работы с выставленными оценками возвращаются в группы для обсуждения вклада каждого в решение проблемы.

Выставляются каждому оценки с занесением в оценочную таблицу. Учитель контролирует и вносит, если нужно, свои коррективы.

  1. Подведение итогов и результатов урока. Рефлексия.
  2. Задание на дом:

  1. *
  1. Чулков П.В. Материалы курса «Уравнения и неравенства в школьном курсе математики»: Лекции 1-8. – М.: Педагогический университет «Первое сентября», 2006.
  2. Дьячков А.К., Иконникова Н.И., Казак В.М., Морозова Е.В. Единый государственный экзамен. Математика. – Челябинск: Взгляд, 2006 –Ч.1,2
  3. Шарыгин И. Ф. Факультативный курс по математике: Решение задач. – М.: Просвещение, 1989
  4. Черкасов О.Ю., Якушев А.Г. Математика: интенсивный курс подготовки к экзамену. – М.: Айрис-пресс, 2004.
  5. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 классов. – М.: Илекса, 2006.

Задания для работы в группах:

Вариант 1 (1,3,5 группы).

  1. Возведи обе части в квадрат:

  1. Умножай на сопряжённое выражение:

  1. Используй свойства функций:

Вариант 2 ( 2,4,6 группы)

  1. Возведи обе части в квадрат:

  1. Умножай на сопряжённое выражение:

  1. Используй свойства функций:

Проверочная работа по теме: « Методы

  1. Возведи обе части в квадрат:

  1. Умножай на сопряжённое выражение:

  1. Используй свойства функций:

решения иррациональных уравнений »

  1. Возведи обе части в квадрат:

  1. Умножай на сопряжённое выражение:

  1. Используй свойства функций:

По теме: методические разработки, презентации и конспекты

Разработка урока «Методы решения иррациональных уравнений»

Цель урока: познакомить учащихся с нестандартными методами решения иррациональных уравнений; систематизировать знания учащихся о методах решения иррациональных уравнений, способствовать формированию у.

Конспект урока – практикума по алгебре и началам анализа с презентацией по теме «Методы решения иррациональных уравнений»

Урок алгебры и начала анализа в 10 классе физико – математического профиля. Цель урока: обобщение и систематизация знаний по теме. Подготовка учащихся к ЕГЭ. В заданиях Единого государственного .

Формирование познавательных способностей на основе овладения методами решения иррациональных уравнений при личностно-ориентированном развивающем обучении

В статье рассматриваются различные методы решения иррациональных уравнений. Использование нестандартных методов при решении уравнений, способствует активному участию ученика в образовательной деятельн.

Методы решения иррациональных уравнений

Разработка урока по данной теме.

Методы решения иррациональных уравнений -11 класс

В данной статье рассматриваются методы решений иррациональных уравнений.

Методы решения иррациональных уравнений

Рассмотрены различные методы решения иррациональных уравнений и заданий с параметром.

Методические разработки к элективному курсу «Методы решений иррациональных уравнений»

Предлагаемый элективный курс «Методы решений иррациональных уравнений» предназначен для учащихся 11 класса общеобразовательной школы и является предметно-ориентированным, направлен на расширение.

План-конспект урока в 10-м классе «Способы решения иррациональных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

План-конспект урока в 10-м классе по теме:

« Способы решения иррациональных уравнений»

обобщение знаний учеников по данной теме;

демонстрация различных методов решения иррациональных уравнений;

показ возможности решения иррациональных уравнений на основе исследования;

формирование навыка самообразования, самоорганизации, умения анализировать, сравнивать, обобщать, делать выводы;

воспитание самостоятельности, умения выслушивать других и умения общаться в группе;

повышение интереса к предмету.

Форма проведения: семинарское занятие.

Оборудование: компьютер, мультимедийный проектор.

Сегодня мы поговорим об иррациональных уравнениях.

На доске приведены примеры уравнений иррациональных и не являющихся иррациональными.

1)

Назовите те уравнения, которые являются иррациональными.

Дайте определения иррационального уравнения.

Ответы учеников.(иррациональными являются уравнения 1), 3), 4), 6). Определение иррационального уравнения:

Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень.)

На предыдущих уроках мы рассматривали решение иррациональных уравнений методом возведения обеих частей уравнения в степень корня (в основном в квадрат). При возведении частей уравнения в чётную степень мы получаем уравнение-следствие, решение которого приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней или нахождение области определения уравнения.

Однако при решении иррациональных уравнений не всегда следует сразу приступать к «слепому» применению известного алгоритма решения.

В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с некоторыми из них мы сегодня познакомимся.

При подготовке к уроку некоторые ученики получили листы-рекомендации, в которых рассматриваются основные приёмы решения иррациональных уравнений. Ребята ознакомились с предложенными решениями и подобрали свои уравнения, решить которые предстоит нам на уроке.

II .Выступление учеников

Решение иррационального уравнения методом возведения обеих частей уравнения в степень корня.

Решим данное уравнение традиционным способом – методом возведения обеих частей в квадрат. Слагаемое, содержащее квадратный корень оставим в левой части уравнения, а х перенесём в правую часть.

Возведём обе части уравнения в квадрат:

х + 4 = 4 – 28х + 49

Перенесём все члены уравнения в одну часть, получаем квадратное уравнение

Корни этого уравнения х = 5 и х = 2,25

Решая это уравнение мы возводили обе части уравнения в квадрат. При возведении обеих частей уравнения в любую четную степень получается уравнение, являющееся не равносильное данному, а являющееся следствием исходного, следовательно, при этом возможно появление посторонних корней. Поэтому необходимым условием решения является проверка корней.

Если х = 5, то = 10 — 7

х = 5 – корень уравнения

Если х = 2,25, то = 4,5 — 7

2,5 = — 2,5 – неверно

х = 2,25 посторонний корень

Предлагаю решить в классе уравнение:

2 ученик. Решение уравнения методом исследования области определения уравнения.

Пусть дано уравнение: — = –

Возведение обеих частей в квадрат приведёт нас к громоздким вычислениям и трате времени на экзамене.

Воспользуемся методом исследования области допустимых значений заданного уравнения.

Область допустимых значений данного уравнения определяется системой неравенств х=2

Данное уравнение определено только при х = 2.

Проверим, является ли число 2 корнем уравнения:

Попробуйте решить уравнение: = х — 2

3 ученик. Использование свойства монотонности функции.

Я хочу рассказать об уравнениях, решение которых основывается на свойстве монотонности функций. Существуют теоремы:

Теорема 1. Пусть уравнение имеет вид: f ( x ) = с, где f ( x ) –монотонно возрастающая (убывающая) функция, а с – число, входящее область значений функции f ( x ), тогда уравнение f ( x ) = с имеет единственный корень.

Теорема 2. Пусть уравнение имеет вид f ( x )= g ( x ), где функции f ( x ) и g ( x ) «встречно монотонны», т.е. f ( x ) возрастает, а g ( x ) убывает или наоборот, то такое уравнение имеет не более одного корня.

Если удается заметить эти свойства функций в уравнении или привести уравнение к таким видам, и при этом нетрудно угадать корень уравнения, то он и будет единственным решением данного уравнения.

Пример для изучения

Пусть дано уравнение: + = 6

ОДЗ уравнения: х+60; х

Функции = и = являются возрастающими на промежутке [- 6; , поэтому функция у = + так же является возрастающей на этом промежутке, и следовательно принимает любое значение, в том числе и 6, только один раз. Значит, уравнение имеет единственный корень.

Найдём этот корень подбором.

Проверкой убеждаемся, что число 2 является корнем данного уравнения.

Я предлагаю решить на уроке уравнение:

Это уравнение можно попытаться решить возведением обеих частей в квадрат (трижды!). Однако при этом получится уравнение четвертой степени.

Попробуйте использовать свойства монотонности функций, входящих в уравнение.

4 ученик Метод введения новой перменной.

Удобным средством решения иррациональных уравнений иногда является метод введения новой переменной, или «метод замены». Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение, зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную.

Пример для изучения:

ОДЗ уравнения: х х

Возведём обе части уравнения в 5-ю степень. При возведении обеих частей уравнения в нечётную степень получаем уравнение, равносильное данному, следовательно, не требуется проверка найденных корней. Получаем

В классе я предлагаю решить уравнение:

5 ученик Метод оценки частей уравнения .

Рассмотрим уравнение: + = 14х —

Запишем уравнение в виде + = -( +49)

Так как левая часть данного уравнения неотрицательная, а

правая — неположительная при любых допустимых значениях x ,

то равенство возможно только в том случае, когда они обе части уравнения

равны нулю. Легко убедиться, что это возможно только при х = 7.

Для решения в классе предлагаю уравнение:

III . Работа учеников в группах.

После прослушивания выступающих начинается работа учеников в группах по решению предложенных уравнений.

Учитель контролирует работу групп, даёт консультации.

IV . Домашнее задание № 1712 – 1719 (а) стр 253 задачника


источники:

http://nsportal.ru/shkola/matematika/library/2020/10/14/metody-resheniya-irratsionalnyh-uravneniy

http://infourok.ru/plankonspekt-uroka-v-m-klasse-sposobi-resheniya-irracionalnih-uravneniy-2910993.html