Система линейных уравнений 7 класс подстановкой

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    Решение системы линейных уравнений методом подстановки

    Алгоритм решения системы линейных уравнений методом подстановки

    1. Из любого уравнения системы выразить одну переменную через другую.
    2. Подставить во второе уравнение системы вместо переменной выражение, полученное на первом шаге.
    3. Решить второе уравнение относительно выраженной переменной.
    4. Подставить найденное значение переменной в выражение, полученное на первом шаге.
    5. Найти значение второй переменой.
    6. Записать ответ в виде упорядоченной пары найденных значений переменных.

    Из второго уравнения выражаем y:

    Подставляем выражение для y в первое уравнение:

    Шаг 3 Решаем первое уравнение:

    Подставляем значение x в выражение для y:

    В последовательной записи:

    $$ <\left\< \begin 3x+y = 5 \\ y-x = 1 \end \right.> \Rightarrow <\left\< \begin 3x+y = 5 \\ y = x+1 \end \right.> \Rightarrow <\left\< \begin 3x+(x+1) = 5 \\ y = x+1 \end \right.> \Rightarrow <\left\< \begin 4x = 5-1 \\ y = x+1 \end \right.> \Rightarrow $$ $$ \Rightarrow <\left\< \begin x = 1 \\ y = x+1 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 2\end \right.> $$

    Примеры

    Пример 1. Решите систему уравнений методом подстановки:

    $ а) <\left\< \begin 5x-4y = 3 \\ 2x-3y = 4 \end \right.> \Rightarrow <\left\< \begin 5x-4y = 3 \\ x = \frac<3y+4> <2>= 1,5y+2 \end \right.> \Rightarrow <\left\< \begin 5(1,5y+2)-4y = 3 \\ x = 1,5y+2 \end \right.> \Rightarrow $

    $ \Rightarrow <\left\< \begin 7,5y+10-4y = 3 \\ x=1,5y+2 \end \right.> \Rightarrow <\left\< \begin 3,5y = -7 \\ x = 1,5y+2 \end \right.> \Rightarrow <\left\< \begin y = -2 \\ x = 1,5y+2 \end \right.> \Rightarrow <\left\< \begin x = -1 \\ y = -2\end \right.> $

    $ б) <\left\< \begin 4x-3y = 7 \\ 3x-4y = 0 \end \right.> \Rightarrow <\left\< \begin 4x-3y = 7 \\ y = \frac<3> <4>x \end \right.> \Rightarrow <\left\< \begin 4x-3\cdot \frac<3> <4>x = 7 \\ y = \frac<3> <4>x \end \right.> \Rightarrow <\left\< \begin (4- \frac<9><4>)x = 7 \\ y = \frac<3> <4>x \end \right.> \Rightarrow $

    $\Rightarrow <\left\< \begin x = 7 \cdot \frac<4> <7>= 4 \\ y = \frac<3> <4>x = \frac<3> <4>\cdot 4 = 3 \end \right.> \Rightarrow <\left\< \beginx = 4 \\ y = 3 \end \right.> $

    $ в) <\left\< \begin 5a-4b = 9 \\ 2a+3b = -1 \end \right.> \Rightarrow <\left\< \begin 5a-4b = 9 \\ a = \frac<-3b-1> <2>= -1,5b-0,5 \end \right.> \Rightarrow <\left\< \begin 5(-1,5b-0,5)-4b = 9 \\ a = -1,5b-0,5 \end \right.> \Rightarrow $

    $ \Rightarrow <\left\< \begin -7,5b-2,5-4b = 9 \\ a = -1,5b-0,5 \end \right.> \Rightarrow <\left\< \begin-11,5b = 11,5 \\ a = -1,5b-0,5 \end \right.> \Rightarrow <\left\< \begin a = 1 \\ b = -1 \end \right.> $

    $ г) <\left\< \begin 7a+4b = 5 \\ 3a+2b = 1 \end \right.> \Rightarrow <\left\< \begin 7a+4b = 5 \\ b = \frac<-3a+1> <2>= -1,5a+0,5 \end \right.> \Rightarrow <\left\< \begin 7a+4(-1,5a+0,5) = 5 \\ b = -1,5a+0,5 \end \right.> \Rightarrow $

    $ \Rightarrow <\left\< \begin 7a-6a+2 = 5 \\ b = -1,5a+0,5 \end \right.> \Rightarrow <\left\< \begin a = 3 \\ b = -1,5\cdot3+0,5 = -4 \end \right.> $

    Пример 2. Найдите решение системы уравнений:

    $а) <\left\< \begin \frac<4>-y = 7 | \times 4 \\ 3x+ \frac <2>= 9 | \times 2\end \right.> \Rightarrow <\left\< \begin x-4y = 28 \\ 6x+y = 18 \end \right.> \Rightarrow <\left\< \begin x = 4y+28 = 4(y+7) \\ 6 \cdot 4(y+7)+y = 18 \end \right.> \Rightarrow $

    $\Rightarrow <\left\< \begin x = 4(y+7) \\ 24y+168+y = 18 \end \right.> \Rightarrow <\left\< \begin x = 4(y+7) \\ 25y = -150 \end \right.> \Rightarrow <\left\< \beginx = 4(-6+7) = 4 \\ y = -6 \end \right.>$

    $ в) <\left\< \begin 3(5x-y)+14 = 5(x+y) \\ 2(x-y)+9 = 3(x+2y)-16 \end \right.> \Rightarrow <\left\< \begin 15x-3y+14 = 5x+5y \\ 2x-2y+9 = 3x+6y-16 \end \right.> \Rightarrow $

    $ \Rightarrow <\left\< \begin 10x-8y = -14 |:2 \\ x+8y = 25 \end \right.> \Rightarrow <\left\< \begin 5x-4y = -7 \\ x = -8y+25 \end \right.> \Rightarrow <\left\< \begin 5(-8y+25)-4y = -7 \\ x = -8y+25 \end \right.> \Rightarrow $

    $ \Rightarrow <\left\< \begin -40y+125-4y = -7 \\ x = -8y+25 \end \right.> \Rightarrow <\left\< \begin -44y = -132 \\ x = -8y+25 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 3 \end \right.> $

    $ г) <\left\< \begin 5-3(2x+7y) = x+y-52 \\ 4+3(7x+2y) = 23x \end \right.> \Rightarrow <\left\< \begin 5-6x-21y = x+y-52 \\ 4+21x+6y = 23x \end \right.> \Rightarrow <\left\< \begin 7x+22y = 57 \\ 2x-6y = 4 |:2 \end \right.>$

    $$ \Rightarrow <\left\< \begin 7x+22y = 57 \\ x-3y = 2 \end \right.> \Rightarrow <\left\< \begin 7x+22y = 57 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin 7(3y+2)+22y = 57 \\ x = 3y+2 \end \right.> \Rightarrow $$

    $$ \Rightarrow <\left\< \begin 21y+14+22y = 57 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin 43y = 43 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin x = 5 \\ y = 1 \end \right.>$$

    Пример 3*. Найдите решение системы уравнений:

    Перепишем систему и найдём решение для новых переменных:

    $$ <\left\< \begin 3a+8b = 5 \\ 12b-a = 2 \end \right.> \Rightarrow <\left\< \begin 3(12b-2)+8b = 5 \\ a = 12b-2 \end \right.> \Rightarrow <\left\< \begin 36b-6+8b = 5 \\ a = 12b-2 \end \right.> \Rightarrow $$

    Конспект урока по алгебре «Решение систем линейных уравнений методом подстановки» (7 класс)

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Конспект урока по теме:

    «Решение систем линейных уравнений методом подстановки»

    Учёнова Наталья Николаевна

    учитель математики МОУ СОШ № 22

    Тема урока: Решение систем линейных уравнений методом подстановки.

    Учебник: Алгебра: 7 класс: учебник для учащихся образовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир.

    Тип урока: урок изучения нового материала.

    Цель урока: формирование у учащихся умения решать системы линейных уравнений с двумя неизвестными способом подстановки.

    Образовательные: повторить понятие, что называется решением системы линейный уравнений, что значит, решить систему линейных уравнений с двумя неизвестными, познакомиться с алгоритмом решения системы двух линейных уравнений с двумя неизвестными методом подстановки, обобщить и систематизировать знания и умения обучающихся при решении систем линейных уравнений с двумя переменными.

    Развивающие: развивать математический и общий кругозор, мышление и речь обучающихся, способствовать формированию умений применять приёмы: обобщения, сравнения, выделения главного.

    Воспитательные: формировать интерес к математике, к познанию нового, умению анализировать, сравнивать, организованности и взаимопомощи через работу в парах.

    Знать, что такое решить систему линейных уравнений с двумя переменными, что называется решением системы уравнений с двумя переменными, умение применять на практике графический метод решения систем двух линейных уравнений и метод подставки;

    уметь выражать одну переменную через другую, полученный результат подставлять в другое уравнение, решать уравнение с одной переменной.

    Познавательные : умение работать с новой информацией, умение анализировать, синтезировать, сравнивать полученный результат;

    Регулятивные : осуществлять контроль своих знаний и умений в процессе достижения результата в форме сравнений решений различными способами и его результата с заданным образцом с целью обнаружения ошибок, корректировать свои действия в случае расхождения

    Коммуникативные : обнаружение и формулирование обучающимися учебной проблемы совместно с учителем; высказывание своего предположения, умение определить и сформулировать цель урока с помощью учителя, умение вступать в диалог с учителем и одноклассниками, участвовать в коллективном обсуждении;

    формировать желание учиться и приобретать новые знания, не останавливаться перед трудностями и искать пути их решения, умение осуществлять самооценку успешности своей учебной деятельности.

    Методы: фронтальный , частично–поисковый, коллективный, индивидуальный.

    Оборудование: учебник, проектор, экран, раздаточный материал.


    источники:

    http://reshator.com/sprav/algebra/7-klass/reshenie-sistemy-linejnyh-uravnenij-metodom-podstanovki/

    http://infourok.ru/konspekt-uroka-po-algebre-reshenie-sistem-linejnyh-uravnenij-metodom-podstanovki-7-klass-4286397.html