Система линейных уравнений презентация 1 курс

Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения. — презентация

Презентация была опубликована 6 лет назад пользователемМарина Городенская

Похожие презентации

Презентация на тему: » Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения.» — Транскрипт:

1 Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения. Цель: Рассмотреть понятие СЛАУ.

2 Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: Здесь x 1, x 2,, x n – неизвестные величины; a ij (i = 1,2, …, m; j =1,2, …, n) – числа, называемые коэффициентами системы (первый индекс — номер уравнения, второй номер неизвестной); b 1, b 2, …, b m – числа, называемые свободными членами.

3 Решением системы Решением системы будем называть упорядоченный набор чисел x 1, x 2, …, x n, обращающий каждое уравнение системы в верное равенство. Решитьсистему Решить систему значит найти все ее решения или доказать, что ни одного решения нет. совместной Система, имеющая решение, называется совместной.

4 Если система имеет только одно решение, то она называется определенной определенной. Система, имеющая более чем одно решение, называется неопределенной совместной неопределенной (совместной и неопределенной неопределенной). Если система не имеет решений, то несовместной она называется несовместной.

5 Система, у которой все свободные члены равны нулю (b 1 = b 2 =…= b n = 0), однородной называется однородной. Однородная система всегда совместна, так как набор из n нулей удовлетворяет любому уравнению такой системы. Если число уравнений системы совпадает с числом неизвестных (m=n), квадратной то система называется квадратной.

6 Две системы, множества решений которых совпадают, называются эквивалентными эквивалентными или равносильными. равносильными.

7 Преобразование,применение которого превращает систему в новую систему, эквивалентную исходной,называется эквивалентным равносильным эквивалентным или равносильным преобразованием. преобразованием.

8 Общий метод решения СЛАУ. (Метод Гаусса). Если система совместна, т. е. rang A = rang A* = (r),то r-уравнений СЛАУ линейно-независимы, а остальные (n — r) являются линейными комбинациями. Решить систему значит выразить базисные неизвестные через свободные, придавая различные значения свободным неизвестным.

9 Общий метод решения однородной СЛАУ. Теорема: Если ранг матрицы однородной СЛАУ = r, то система имеет (m — r) линейно — независимых решений. Опр.: Совокупность решений, т. е. совокупность называется фундаментальной системой решений однородной СЛАУ.

10 Теорема об общем решении не одноодной СЛАУ. Теорема: Если фундаментальная система решений соотв-щей однор. СЛАУ; — некоторое решение не одно. СЛАУ, то сумма — решение не одно. СЛАУ. Полученное решение называется общим решением не одноодной СЛАУ.

11 Матричный способ решения СЛАУ. СЛАУ запишем в виде А х Х=В. Если det A0, то для матрицы А сущ. обратная А-1. Умножим обе части СЛАУ слева на А-1: А-1 х А х Х = А-1 х В; Е х Х = А-1 х В; Х = А-1 х В.

12 Метод Крамера. СЛАУ имеет вид А х Х=В при det A0 ; Х=А-1 х В. х 1 A11 A12 … An1 b1 х 2 = A21 A22 … An2 х b2 = хn A1n A2n … Ann n х n bn n х 1 A1n х b1 + A2n х b2 + Ann х bn A11 х b1 + A21 х b2 ……… A12 х b1 + A22 х b2 ………

13 1. 2. Числители — величина определителя, разложенного по первому столбцу, тогда первый столбец это элементы b 1, b 2 … b n, а остальные столбцы – это столбцы матрицы А и т.д. Если det A0, то СЛАУ имеет единственное решение и определяется формулами:

14 Элементарные преобразования матрицы 1) перемена местами двух строк; 2) умножение строки на число, отличное от нуля; 3) замена строки матрицы суммой этой строки с любой другой строкой, умноженной на некоторое число.

15 Назовем квадратную матрицу, у которой на главной диагонали стоят числа, отличные от нуля, а под главной диагональю – нули, треугольной матрицей треугольной матрицей. Если с помощью элементарных преобразований матрицу коэффициентов квадратной системы можно привести к треугольной матрице, то система совместна определен на совместна и определенна.

16 A Если матрицу A можно разделить вертикальной чертой на две матрицы: стоящую слева треугольную матрицу размера m m и стоящую справа прямоугольную матрицу, Aтрапециевидной то матрицу A назовем трапециевидной или трапецеидальной трапецеидальной.

17 Если при преобразовании расширенной матрицы системы матрица коэффициентов приводится к трапецеидальному виду и при этом система не получается противоречивой, то система совместна и является бесконечно неопределенной, то есть имеет бесконечно много решений много решений.

18 Те переменные, коэффициенты при которых стоят на главной диагонали трапецеидальной матрицы (это значит, что эти коэффициенты базисными отличны от нуля), называются базисными. Остальные неизвестные называются свободными свободными.

19 Если свободным неизвестным при даны конкретные числовые значения и через них выражены базисные неизвестные, то полученное частным решение называется частным решением решением. Если свободные неизвестные выражены через параметры, то получается решение, которое общим решением. называется общим решением.

20 Если всем свободным неизвестным приданы нулевые значения, то полученное решение базисным называется базисным. Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, рангом системы называемое рангом системы.

21 Вопросы: 1)Когда система имеет единственное решение? 2)Какие элементарные преобразования матрицы можно делать при решении СЛАУ?

Презентация по дисциплине «Математика» на тему «Решение систем линейных уравнений» (1-й курс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Матрицы Метод Гаусса Формулы Крамера Омский летно-технический колледж гражданской авиации имени А.В. Ляпидевского — филиал федерального государственного бюджетного образовательного учреждения высшего образования «Ульяновский институт гражданской авиации имени Главного маршала авиации Б.П. Бугаева» (ОЛТК ГА – филиал ФГБОУ ВО УИ ГА)

Содержание Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер Метод Крамера Вывод Использованные источники информации

Матрица Определение Прямоугольная таблица из m, n чисел, содержащая m – строк и n – столбцов, вида: называется матрицей размера m  n Числа, из которых составлена матрица, называются элементами матрицы. Положение элемента аi j в матрице характеризуются двойным индексом: первый i – номер строки; второй j – номер столбца, на пересечении которых стоит элемент. Сокращенно матрицы обозначают заглавными буквами: А, В, С… Коротко можно записывать так:

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) Биография Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50х101=5050 . После 1801 года Гаусс включил в круг своих интересов естественные науки. Катализатором послужило открытие малой планеты Церера ,вскоре после наблюдений потерянной. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена. Умер Гаусс 23 февраля 1855 года в Гёттингене.

Метод Гаусса Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные. Система т линейных уравнений с п неизвестными имеет вид: x1 , x2, …, xn – неизвестные. ai j — коэффициенты при неизвестных. bi — свободные члены (или правые части)

Типы уравнений Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения. Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений. Две совместные системы называются равносильными, если они имеют одно и то же множество решений.

Элементарные преобразования К элементарным преобразованиям системы отнесем следующее: перемена местами двух любых уравнений; умножение обеих частей любого из уравнений на произвольное число, отличное от нуля; прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

Общий случай Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение: Дана система: 1-ый шаг метода Гаусса На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а11. Получим уравнение: где Исключим х1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х1 (соответственно а21 и а31). Система примет вид: Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы. (1) (2) (3)

2-ой шаг метода Гаусса На втором шаге исключим неизвестное х2 из третьего уравнения системы (3). Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3), получим уравнение: где Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим уравнение: Предполагая, что находим (4)

В результате преобразований система приняла вид: Система вида (5) называется треугольной. Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют прямым ходом метода Гаусса. Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса. Для этого найденное значение х3 подставляют во второе уравнение системы (5) и находят х2. Затем х2 и х3 подставляют в первое уравнение и находят х1. (5)

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b, где b  0, то это означает, что система несовместна и решений не имеет. В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду. Треугольная система имеет вид: Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода Гаусса. Ступенчатая система имеет вид: Такая система имеет бесчисленное множество решений.

Рассмотрим на примере Покажем последовательность решения системы из трех уравнений методом Гаусса Поделим первое уравнение на 2, затем вычтем его из второго (a21=1, поэтому домножение не требуется) и из третьего, умножив предварительно на a31=3 Поделим второе уравнение полученной системы на 2, а затем вычтем его из третьего, умножив предварительно на 4,5 (коэффициент при x2) Тогда x3=-42/(-14)=3; x2=8-2×3=2 x1=8-0,5×2-2×3=1

Метод Крамера Метод Крамера—способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.

Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция) Биография Крамер родился в семье франкоязычного врача. В 18 лет защитил диссертацию. В 20-летнем возрасте Крамер выставил свою кандидатуру на вакантную должность преподавателя на кафедре философии Женевского университета. 1727: Крамер 2 года путешествовал по Европе, заодно перенимая опыт у ведущих математиков — Иоганна Бернулли и Эйлера,Галлея и де Муавра, Мопертюи и Клеро. В свободное от преподавания время Крамер пишет многочисленные статьи на самые разные темы: геометрия, история математики, философия, приложения теории вероятностей. 1751: Крамер получает серьёзную травму после дорожного инцидента с каретой. Доктор рекомендует ему отдохнуть на французском курорте, но там его состояние ухудшается, и 4 января 1752 года Крамер умирает.

Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных: a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 …… an1x1+an2x2+…+annxn=bn Теорема. Cистема

Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: a11 a12 … a1n a21 a22 … a2n … … an1 an2 … ann ≠ 0

В этом случае решение можно вычислить по формуле Крамера

Для получения значения xk в числитель ставится определитель, получающийся из det(A) заменой его k-го столбца на столбец правых частей Пример. Решить систему уравнений :

Найдите оставшиеся компоненты решения. Формулы Крамера не представляют практического значения в случае систем с числовыми коэффициентами: вычислять по ним решения конкретных систем линейных уравнений неэффективно, поскольку они требуют вычисления (n+1)-го определителя порядка n , в то время как метод Гаусса фактически эквивалентен вычислению одного определителя порядка n . Тем не менее, теоретическое значение формул Крамера заключается в том, что они дают явное представление решения системы через ее коэффициенты. Например, с их помощью легко может быть доказан результат Решение системы линейных уравнений с квадратной матрицей A является непрерывной функцией коэффициентов этой системы при условии, что det A не равно 0 .

Найдите оставшиеся компоненты решения. Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. зависящей от параметра , определить предел отношения компонент решения:

Решение. В этом примере определитель матрицы системы равен . По теореме Крамера система совместна при . Для случая применением метода Гаусса убеждаемся, что система несовместна. Тем не менее, указанный предел существует. Формулы Крамера дают значения компонент решения в виде и, хотя при каждая из них имеет бесконечный предел, их отношение стремится к пределу конечному.

Ответ. Приведенный пример поясняет также каким образом система линейных уравнений, непрерывно зависящая от параметра, становится несовместной: при стремлении параметра к какому-то критическому значению (обращающему в нуль определитель матрицы системы) хотя бы одна из компонент решения «уходит на бесконечность».

Вывод Рассмотренный в данной презентации Метод Крамера позволяет решать линейные системы, но удобнее решать системы линейных уравнений с помощью метода Гаусса, который находит широкое применение и содержится в пакетах стандартных программ для ЭВМ.

Презентация на тему: Системы линейных уравнений

Системы линейных уравнений Лекция 3

Пусть задана система n линейных уравнений с n неизвестными

Совокупность значений неизвестных где i =1, 2, …, n, при подстановке которых уравнения системы обращаются в равенства, назовем решением системы.

Система, имеющая хоть одно решение, называется совместной. Система, не имеющая ни одного решения, называется несовместной. Система, имеющая единственное решение, называется определенной. Система, имеющая более одного решения, называется неопределенной.

Правило Крамера решения систем линейных уравнений

Рассмотрим систему линейных уравнений Система трех уравнений может быть решена по правилу Крамера,

Составим определитель из коэффициентов при неизвестных Назовем его определителем системы. Если Δ≠0, то система совместна

Далее составим три вспомогательных определителя: , ,

Решение системы (10) находим по формулам: , , которые называют формулами Крамера

Замечание. Правило Крамера при n>3 не имеет практического применения из-за громоздкости вычислений.

Пример Решить систему уравнений

Решение систем линейных уравнений средствами матричного исчисления

Рассмотрим систему n линейных уравнений с n неизвестными:

Составим из коэффициентов при неизвестных матрицу и назовем ее матрицей системы.

Матрицу называют матрицей-столбцом из свободных членов, а матрицу — матрицей-столбцом из неизвестных.

Запишем систему уравнений в виде матричного уравнения . Умножая обе части этого уравнения слева на , получим: .

Таким образом, если матрица А системы невырожденная, т.е. существует , то решение системы линейных уравнений можно найти по формуле .

Замечание Метод матричного исчисления обычно применяют для решения систем трех уравнений с тремя неизвестными. Решать этим методом системы с большим числом уравнений и неизвестных неудобно, так как он приводит к громоздким выкладкам.

Пример Средствами матричного исчисления решить систему линейных уравнений

Ранг матрицы Рангом матрицы называется наивысший из порядков отличных от нуля миноров матрицы. Ранг матрицы A обозначается: или .

Элементарные преобразования матрицы Для вычисления ранга матрицы ее сначала приводят к более простому виду с помощью так называемых элементарных преобразований, к которым относятся:

1.Умножение всех элементов строк на одно и то же число не равное 0. 2. Перестановка строк местами. 3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на одно и тоже число.

4.Отбрасывание одной из двух одинаковых строк. 5.Отбрасывание нулевой строки

Теорема: Элементарные преобразования не меняют ранг матрицы. Матрицы, полученные с помощью элементарных преобразований, называют эквивалентными (

Пример С помощью элементарных преобразований вычислить ранг матрицы

Понятие о линейной зависимости Рассмотрим матрицу Обозначим ее строки Очевидно . Это равенство понимается в смысле поэлементного сложения.

Строки матрицы А линейно зависимы, если можно подобрать такие не равные нулю одновременно числа , что . Если таких чисел подобрать нельзя, то строки матрицы линейно независимы.

Если одна из строк матрицы линейно выражается через другие строки, то строки этой матрицы между собой линейно зависимы.

Пример Строки такой матрицы линейно независимы (лнз), так как их невозможно выразить одну через другую:

Теорема о ранге матрицы Ранг матрицы равен максимальному числу линейно – независимых строк матрицы.

Теорема. Если ранг матрицы равен r, то в этой матрице можно найти r линейно независимых строк ( столбцов), через которые линейно выражаются остальные строки ( столбцы) матрицы.

Теорема. Для того чтобы определитель был равен нулю, необходимо и достаточно, чтобы его строки ( столбцы) были линейно зависимы.


источники:

http://infourok.ru/prezentaciya-po-discipline-matematika-na-temu-reshenie-sistem-lineynih-uravneniy-y-kurs-1194910.html

http://ppt4web.ru/matematika/sistemy-linejjnykh-uravnenijj.html