Система линейных уравнений в применении

Презентация на тему «Применение систем линейных уравнений для решения прикладных задач»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

ГПОУ «Донецкий политехнический колледж» Применение систем линейных уравнений для решения прикладных задач. Прелодаватель математики Низамова И . В. Донецк 2018

Математика – царица наук Карл Фридрих Гаусс

Системы линейных уравнений широко используются в задачах экономики, физики, электротехники, программирования и других наук.

Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных. Система линейных уравнений с n переменными:

Числа aij (i=1,2,…,m, j=1,2,…,n) называются коэффициентами при переменных, а bi (i=1,2,…,m) – свободными членами. Решение системы уравнений — это последовательность чисел (k1, k2, . kn), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x1, x2. xn дает верное числовое равенство.

Система, имеющая хотя бы одно решение, называется совместной; система, не имеющая ни одного решения — несовместной. Методы решения: По формулам Крамера; Исключение неизвестных ( метод Гаусса); С помощью обратной матрицы.

Метод Крамера Если главный определитель системы то система имеет единственное решение, которое можно найти по формулам Крамера: где –определитель, полученный из главного заменой i-того столбца столбцом свободных членов.

Метод Гаусса Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы. Расширенная матрица содержит вместе с коэффициентами при неизвестных свободные члены системы уравнений.

Матричный метод Cистему линейных уравнений записывают в матричной форме: AX = B, где A — основная матрица системы; B — столбец свободных членов; X — столбцы решений системы; Матричное уравнение умножают слева на A–1 (матрицу, обратную к матрице A). Так как A− 1A = E, то X = A -1B. Метод применим, если определитель системы не равен 0.

Проверка домашнего задания Решить систему линейных уравнений всеми известными методами

Применение систем линейных уравнений для решения прикладных задач. Цель занятия: формировать умение составлять системы линейных уравнений по текстовому условию задачи; закрепить применение методов Крамера и Гаусса решения систем линейных уравнений.

Доклад №1. Задача по электротехнике Два источника постоянного тока соединены параллельно, имеют E1=11,5 B, r1=2,5 Oм, E1=16,5 B, r1=6 Oм, и нагрузочный резистор сопротивлением Rн=30 Oм. Определить значения и направление токов через источники и нагрузку.

В соответствии со вторым законом Кирхгофа Для контура, включающего в себя два источника и имеем: Для контура с источником и сопротивлением нагрузки при обходе по часовой стрелке имеем: Подставив числовые данные, получим:

Первое уравнение умножим на 6 и сложим со вторым и третьим. Получим: второе уравнение умножим на (-6) и сложим с третьим. Получим: Отсюда

Доклад №2. Из Москвы в Казань необходимо перевезти оборудование трех типов: I типа — 95 ед., II типа — 100 ед., III типа — 185 ед. Для перевозки оборудования завод может заказать три вида транспорта. Количество оборудования каждого типа, вмещаемого на определенный вид транспорта, приведено в таблице. Установить, сколько единиц транспорта каждого вида потребуется для перевозки этого оборудования. Тип оборудования Количество оборудования Т1 Т2 Т3 I 3 2 1 II 4 1 2 III 3 5 4

Пусть x ‒ количество единиц I-ого вида транспорта, y ‒ количество единиц II-ого вида транспорта, z ‒ количество единиц III-его вида транспорта. Тогда Решим систему уравнений методом Крамера: Δ = =12+12+20-3-30-32=-21 ; Δх = =380+740+500-185-950-800=-315; х = = 15;

Δу = =1200+570+740-300-1110-1520=-420; у = = 20; Δz = =555+600+1900-285-1500-1480=-210; Z = = 10. Ответ: Транспорта I-ого вида использовано 15 единиц, II-ого вида 20 единиц, а III-го вида 10 единиц.

Доклад №3. Из некоторого листового материала необходимо выкроить 360 заготовок типа А, 300 заготовок типа Б и 675 заготовок типа В. При этом можно применять три способа раскроя. Количество заготовок, получаемых из каждого листа при каждом способе раскроя, указано в таблице: Найти количество листов материала, раскраиваемых соответственно первым, вторым и третьим способами. Тип заготовки Способ раскроя 1 2 3 А 3 2 1 Б 1 6 2 В 4 1 5

Обозначим через x, y, z количество листов материала, раскраиваемых соответственно первым, вторым и третьим способами. По условию задачи составим систему уравнений:

Ответ: первым способом раскраивается 90 листов, вторым – 15, третьим – 60.

Доклад №4. Частным лицом куплены три пакета акций общей стоимостью 485 ден. ед., причем акции первой группы куплены по 5 ден. ед. за акцию, второй – по 20, третьей – по 13. Через месяц стоимость акций первой, второй и третьей групп составила соответственно 6, 14 и 19 ден. ед., а стоимость всего пакета была 550 ден. ед. Еще через месяц они стоили по 8, 22 и 20 ден. ед. соответственно, а весь пакет стоил 660 ден. ед. Cколько акций каждой группы было куплено?

Пусть акции I-ой группы было куплено х штук, акций II-ой группы y штук, акций III-ей группы z штук. Согласно условию задачи имеем: Решим систему уравнений методом Крамера: Δ = = = 1400+3040+1716-1456-2090-2400=210;

= = 135800+250800+157300-120120-202730-220000=1050; = = 55000+73720+51480-57200-62700-58200=2100; = = 46200+88000+64020-54320-60500-79200=4200; x = = 5; y = = 10; z = = 20; Ответ: Акций I-й группы было куплено 5 штук, акций II-ой группы было куплено 10 штук, акций III-ей группы было куплено 20 штук.

Карл Фридрих Гаусс Карл Фридрих Гаусс родился 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности. Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г. В 1799 г. Гаусс заочно защищает диссертацию. Самым знаменитым трудом, проделанным Карлом Фридрихом Гауссом, была работа под названием «Теория движения небесных тел». Именно в ней ученый предложил теорию возмущения орбит. Знаменитая теорема алгебры, термин «гауссова кривизна», основы дифференциальной геометрии вошли в основу фундаментальных математических законов.

Габриэль Крамер Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в семье врача. Уже в детстве он опережал своих сверстников в интеллектуальном развитии и демонстрировал завидные способности в области математики. В 18 лет он успешно защитил диссертацию. Талантливый учёный написал множество статей на самые разные темы: геометрия, история, математика, философия. В 1730 году он опубликовал труд по небесной механике. Крамер является одним из создателей линейной алгебры. В работе «Введение в анализ алгебраических кривых» Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем – метод Крамера.

Закрепление нового материала. Задача №1. Рассчитать сложную электрическую цепь, если E1=246 B, R1=0,3 Ом, E2=230 B, R2=1 Ом, R3=24 Ом, RВТ1= RВТ2=0.

Задача №2. Предприятием по производству бытовой техники в 1 квартале выпущено 4000 вентиляторов, 2000 миксеров и 6000 электрочайников на общую сумму 23 млн рублей. Во 2 квартале выпущено 3000 вентиляторов, 1000 миксеров и 4000 электрочайников на общую сумму 15,6 млн рублей. В 3 квартале выпущено 1000 вентиляторов, 3000 миксеров и 1000 электрочайников на общую сумму 7,8 млн рублей. Найти стоимость одного вентилятора, одного миксера и одного электрочайника.

Рефлексия Выберите смайлик, характеризующий ваше состояние на занятии.

Домашнее задание. Если ширину производственной прямоугольной площадки увеличить на 4 м, а ее длину уменьшить на 2 м, то ее площадь увеличится на 32 ; если же ширину уменьшить на 3 м, а длину увеличить на 1 м, то ее площадь уменьшится на 39 . Найдите длину и ширину площадки.

Системы уравнений: история, понятия

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Решением системы уравнений называется упорядоченный набор чисел — значений неизвестных, при подстановке которых каждое уравнение системы обращается в верное равенство.

Системой линейных алгебраических уравнений (СЛАУ) называется система вида:

$$\left\<\begin a_ <11>\cdot x_<1>+a_ <12>\cdot x_<2>+\ldots+a_ <1 n>\cdot x_=b_ <1>\\ a_ <21>\cdot x_<1>+a_ <22>\cdot x_<2>+\ldots+a_ <2 n>\cdot x_=b_ <2>\\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\ a_ \cdot x_<1>+a_ \cdot x_<2>+\ldots+a_ \cdot x_=b_ \end\right.$$

Упорядоченный набор значений $\left\^<0>, x_<2>^<0>, \ldots, x_^<0>\right\>$ называется решением системы, если при подстановке в уравнения все уравнения превращаются в тождество.

История систем уравнений

Задачи, соответствующие современным задачам на составление и решение систем уравнений с несколькими неизвестными, встречаются еще в вавилонских и египетских рукописях II века до н.э., а также в трудах древнегреческих, индийских и китайских мудрецов. В китайском трактате «Математика в девяти книгах» словесно изложены правила решения систем уравнений, были замечены некоторые закономерности при решении.

Основные понятия и применения

Система может состоять из алгебраических уравнений, линейных алгебраических уравнений, нелинейных уравнений, дифференциальных уравнений.

Методы решения системы уравнений зависят от типа системы. Например, решения систем линейных алгебраических уравнений хорошо известны ( метод Крамера, метод Гаусса, матричный метод, метод итераций и т.д.). Для нелинейных же систем общего аналитического решения не найдено, они решаются разного рода численными методами. Аналогично дело обстоит и с системами дифференциальных уравнений.

Системы линейных уравнений широко используются в задачах экономики, физики, химии и других науках.

Решение систем линейных алгебраических уравнений — одна из основных задач вычислительной линейной алгебры. Хотя задача решения именно системы линейных уравнений сравнительно редко представляет самостоятельный интерес для прикладных задач, но от умения эффективно решать данные системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности — нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.

Примеры систем линейных уравнений: метод решения

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y — это неизвестные, значение которых надо найти, b, a — коэффициенты при переменных, c — свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 — функции, а (x, y) — переменные функций.

Решить систему уравнений это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака «равенство» часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения — это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 — 4*a*c, где D — искомый дискриминант, b, a, c — множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. Матрица вида n*m имеет n — строк и m — столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей — вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица — это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение — одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y — только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 — обратная матрица, а |K| — определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы «два на два», необходимо лишь помножить друг на друга элементы по диагонали. Для варианта «три на три» существует формула |K|=a1b2c3 + a1b3c2 + a3b1c2 + a2b3c1 + a2b1c3 + a3b2c1. Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере anm — коэффициенты уравнений, матрица — вектор xn — переменные, а bn — свободные члены.

Далее необходимо найти обратную матрицу и умножить на нее исходную. Найти значения переменных в полученной единичной матрицы легко выполнимая задача.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса — Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 — соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x3-2x4=11 и 3x3+2x4=7. Решение любого из уравнений позволит узнать одну из переменных xn.

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. Вертикальная черта отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака «стрелка» и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.


источники:

http://www.webmath.ru/poleznoe/formules_5_0.php

http://fb.ru/article/341146/primeryi-sistem-lineynyih-uravneniy-metod-resheniya