Система нормальных уравнений и ее решение

Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии

Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида:

В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров β0и β1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) y˜ минимальна:

В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0 и β1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2):

.

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=β01xi:

Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии β0 и β1:

y – среднее значение зависимой переменной;

x – среднее значение независимой переменной;

xy – среднее арифметическое значение произведения зависимой и независимой переменных;

G 2 (x) – дисперсия независимой переменной;

Gcov (x, y) – ковариация между зависимой и независимой переменными.

Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:

Система нормальных уравнений и ее решение

Параметры уравнений регрессии находят решением системы нормальных уравнений, отвечающих требованию способа наименьших квадратов. [c.390]

Величины указанных параметров были рассчитаны решением системы нормальных уравнений, получаемых способом наименьших квадратов [c.24]

Это условие приводит к системе нормальных уравнений, решение которых позволяет определить параметры уравнения регрессии. Эти уравнения имеют вид [c.99]

Считая формулу связи линейной (Y = a0 + aiX ), определяем зависимость рентабельности производства плащей в зависимости от рентабельности выпуска зонтов. Для этого решается система нормальных уравнений [c.83]

Этап 3. Система нормальных уравнений для функции имеет вид [c.223]

Считая формулу связи линейной (у = а0 + щх), определим зависимость выпуска промышленных изделий от их запуска. Для этого решается система нормальных уравнений [c.160]

Для исчисления параметров я0 и я, используется система нормальных уравнений [c.368]

В случае выравнивания по прямой способ наименьших квадратов приводит к следующей системе нормальных уравнений [c.322]

По такому же принципу рассчитываются и параметры криволинейного уравнения. Так, в случае параболической зависимости параметры а0, аь а2 находятся по следующей системе нормальных уравнений [c.322]

Вторым этапом является поиск значений параметров уравнения. Параметры трендовых моделей определяются с помощью системы нормальных уравнений. В случае применения линейного тренда используют следующую систему уравнений, которую решают способом наименьших квадратов [c.612]

Величина k определяет гармонику ряда Фурье и определяется целым числом, как правило, в пределах от 1 до 4. Параметры уравнения находят с помощью системы нормальных уравнений способом наименьших квадратов. [c.616]

Отсюда система нормальных уравнений имеет вид [c.239]

Коэффициенты регрессии для представления (4.16) находятся с помощью системы нормальных уравнений (чтобы не загромождать запись, индекс k, по которому идет суммирование у результативного и факторных признаков, подразумевается, но не приводится k — 1,2,. . п). [c.125]

Параметры уравнения OQ, а и а находим из системы нормальных уравнений, при ] / = 0 значения параметров рассчитываются по формулам [c.185]

Значения констант а0, а,, а2,. .. могут быть вычислены путем решения системы нормальных уравнений. [c.126]

Анализ зависимости между ценой продукта и его количеством в динамике позволяет выбрать для функции спроса линейную форму связи вида Р= а0 + а[ + a(Q. По методу наименьших квадратов определяются неизвестные параметры ай и а[ на основе составления и решения системы нормальных уравнений вида [c.74]

Анализ зависимости между издержками и количеством выпускаемой продукции в динамике позволяет для функции издержек выбрать также линейную форму связи вида С= Ь0 + b Q. Неизвестные параметры Ь0 и Ь( также находятся по методу наименьших квадратов на основе составления и решения системы нормальных уравнений вида [c.75]

Уравнение прямой имеет вид у, = а0 + а t. В связи с этим система нормальных уравнений для оценивания параметров прямой имеет вид [c.81]

Упрощенный расчет параметров уравнений заключается в переносе начала координат в середину ряда динамики. В этом случае упрощаются сами нормальные уравнения, а кроме того, уменьшаются абсолютные значения величин, участвующих в расчете. В самом деле, если до переноса начала координат / было равно 1,2,3,. . п, то после переноса — t=. .. —4, — 3, —2, -1,0,1,2,3,4. если число члена ряда нечетное. Когда же число ряда четное, то f =. —5, —3, — 1, 1,3,5. Следовательно, /и все f, у которых р нечетное число, равны 0. Таким образом, все члены уравнений, содержащие /с такими степенями, могут быть исключены. Системы нормальных уравнений теперь упрощаются для прямой [c.82]

Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид [c.115]

В данном случае задача сводится к определению неизвестных параметров а0 а а2. Они определяются на основе системы нормальных уравнений [c.115]

А, а, р и у — параметры производственной функции, которые определяются в результате решения системы нормальных уравнений. [c.363]

При функциональной форме мультиколлинеарности по крайней мере одна из парных связей между объясняющими переменными является линейной функциональной зависимостью. В этом случае матрица Х Х особенная, так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю, т. е. нарушается предпосылка 6 регрессионного анализа. Это приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели. [c.108]

Система нормальных уравнений 54 ——в матричной форме 85 [c.304]

Определение зависимости изменения затрат от изменения технико-экономических параметров изделий включает следующие основные этапы объединение изделий в параметрические ряды отбор параметров, в наибольшей степени влияющих на себестоимость изделий установление формы связи зависимости изменения себестоимости от изменения параметров построение системы нормальных уравнений в соответствии с принятой функцией и расчет коэффициентов. [c.185]

Система нормальных уравнений будет выглядеть следующим образом [c.158]

По данным, приведенным в табл. 5.7 (итоги гр. 2-6), построена система нормальных уравнений [c.204]

Полученная система называется системой нормальных уравнений для нахождения параметров а0 и ах при выравнивании по прямой линии. — [c.47]

Для получения конкретного математического выражения функциональной связи между двумя переменными у» is. х при гиперболической их взаимозависимости составлена система нормальных уравнений [c.52]

Из системы нормальных уравнений находим параметры b и а [c.29]

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии [c.49]

Система нормальных уравнений составит [c.115]

Для определения параметров а и Ь применяется МНК. Система нормальных уравнений следующая [c.146]

Система нормальных уравнений будет иметь вид [c.45]

Применение МНК для оценки параметров параболы второй степени приводит к следующей системе нормальных уравнений [c.63]

Напомним, что в математической статистике для получения несмещенной оценки дисперсии случайной величины соответствующую сумму квадратов отклонений от средней делят не на число наблюдений я, а на число степеней свободы (degress of freedom) я — т, равное разности между числом независимых наблюдений случайной величины п и числом связей, ограничивающих свободу их изменения, т. е. число т уравнений, связывающих эти наблюдения. Поэтому в знаменателе выражения (3.26) стоит число степеней свободы п — 2, так как две степени свободы теряются при определении двух параметров прямой из системы нормальных уравнений (3.5). [c.62]

Напомним, что согласно методу наименьших квадратов параметры прямой1 у, = /(0 = Ь0 + bit находятся из системы нормальных уравнений (3.5), в которой в качестве х, берем t [c.141]

При применении метода наименьших квадратов для оценки параметров экспоненциальной, логистической функций или функции Гомперца возникают сложности с решением получаемой системы нормальных уравнений, поэтому предварительно, до получения соответствующей системы, прибегают к некоторым преобразованиям этих функций (например, логарифмированию и др.) (см. 5.5). [c.143]

В этом модуле реализовано решение системы нормальных уравнений методом наименьших квадратов. Прогноз с использованием модуля М107 осуществляется на базе небольшого числа данных (N > 10) по упрощенной схеме, т. е. по трем наиболее распространенным функциям [c.41]

На основе коэффициентов парной корреляции обра зуется система нормальных уравнений, однако, относящаяся ие к. самим коэффициентам уравнения О , а к таким же величинам в стандартизованном масштабе р [c.45]

Построение системы нормальных уравнений. Оценка коэффициентов уравнения множественной регрессии

Оцененное уравнение в первую очередь должно описывать общий тренд (направление) изменения зависимой переменной Y. При этом необходимо иметь возможность рассчитать отклонения от этого тренда.

По данным выборки объема n: (x1i, x2i, . хpi, уi), i = 1,2, . n, требуется оценить значения параметров bi вектора b, т.е. оценить (приблизить) значения коэффициентов выбранной обычно вначале линейной модели (здесь хij, (j = 1, 2, . n) — это значение переменной Xi в j-ом наблюдении).

При выполнении предпосылок МНК (о них мы поговорим позже) относительно ошибок еi оценки b0, b1, …, bp коэффициентов b0, b1, . bp множественной линейной регрессии по МНК являются несмещенными, эффективными и состоятельными.

На основании (5.2) отклонение ei значения уi зависимой переменной Y от теоретического (модельного) значения

соответствующего уравнению регрессии в i-м наблюдении (i = 1, 2, . n), рассчитывается по формуле

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК), т.е. минимизируется функция S(b0, b1,…, bp) по переменным b0, b1,…, bp

S(b0, b1,…, bp) = . (5.3′)

На основании необходимого условия экстремума функции многих переменных S(b0, b1. bp), представляющей (5.3′), необходимо приравнять к нулю частные производные по этим переменным или в матричной форме — вектор частных производных

.

В результате получится система p+1 линейных уравнений для неизвестных b0, b1. bp. После приведения подобных членов получится система нормальных уравнений, решение которой и позволяет получить оценку коэффициентов множественной регрессии.

Ее решение может быть найдено в частности, методом Гаусса, методом Крамера, методом вычисления обратной матрицы и многими другими методами решения систем линейных уравнений.

В пункте 5.3 будет показано, как обратиться к процедурам в Microsoft Excel, позволяющим решать это уравнение и вычислять не только значения коэффициентов множественной регрессии, но и числовые значения других ее характеристик.

При нелинейной зависимости признаков, приводимой к линейному виду, значения коэффициентов множественной регрессии также определяются также с помощью метода наименьших квадратов лишь с той разницей, что он применяется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

мы преобразовываем её в линейный вид:

где переменные выражены в логарифмах.

Далее метод наименьших квадратов применяется так же, как и раньше: строится система нормальных уравнений и определяются значения ln(a), b1, b2, …, bp. Потенцируя ln(a), найдём значение параметра а и общий вид уравнения степенной функции.

Поскольку параметры степенной функции представляют собой коэффициенты эластичности, то они сравнимы по разным факторам.

Пример 2. При исследовании спроса на некоторый продукт получено следующее уравнение

где у – количество продукта на душу населения (кг); х1 – цена (руб.); х2 – доход на душу населения (тыс. руб.)

Из этого уравнения видно, что с ростом цены на 1% при том же доходе спрос снижается в среднем на 0,888%, а увеличение дохода на 1% при неизменных ценах вызывает увеличение спроса на 1,126%.

При других нелинейных функциях методика оценки параметров метода наименьших квадратов выполняется также. В отличие от предыдущих функций параметры более сложных моделей не имеют чёткой экономической интерпретации – они не являются показателями силы связи и её эластичности. Это не исключает возможности их применения, но делает их менее привлекательными в практических расчётах.


источники:

http://economy-ru.info/info/5340/

http://megalektsii.ru/s52935t1.html