Система распадается на две группы независимых уравнений

Уравнения Максвелла. Электромагнитное поле.

Теория электромагнитного поля, начала которой заложил Фарадей, математически была завершена Максвеллом. При этом одной из новых важнейших идей, вы­двинутых Максвеллом, была мысль о симметрии во взаимоза­висимости электрического и магнитного полей. А именно, по­скольку меняющееся во времени магнитное поле (dΒ/dt) созда­ет электрическое поле (см. (2.11.6)), следует ожидать, что меняющееся во времени электрическое поле (dΕ/dt) создает магнитное поле.

К этой идее о необходимости существования по сути нового явления индукции можно прийти путем, например, следую­щих рассуждений. Мы знаем, что согласно теореме о цирку­ляции вектора

( 2.12.1 )

Применим эту теорему к случаю, когда предварительно заря­женный плоский конденсатор разряжается через некоторое внешнее сопротивление (рис. a). В качестве контура Г, по которому определяем циркуляцию , возьмем кривую, охватывающую провод. На контур Г можно натянуть разные поверхности, например S и S’. Обе поверхно­сти имеют «равные права», однако через поверхность S течет ток I, а через поверхность S’ не течет никакого тока. Получается, что циркуляция вектора зависит от того, какую поверхность мы натягиваем на данный контур, чего явно не может быть (в случае постоянных токов этого и не проис­ходило).

А нельзя ли как-то изменить правую часть (2.12.1), чтобы избе­жать этой неприятности? Оказывается, можно, и вот как.

Первое, что мы замечаем, это то, что поверхность S’ «прони­зывает» только электрическое поле. По теореме Гаусса поток вектора сквозь замкнутую поверхность = q, откуда

(2.12.2)

С другой стороны, согласно уравнению непрерывности

(2.12.3)

Сложив по отдельности левые и правые части уравнений (2.12.2) и (2.12.3), получим

(2.12.4)

Это уравнение аналогично уравнению непрерывности для по­стоянного тока. Из него видно, что кроме плотности тока про­водимости имеется еще одно слагаемое /dt, размерность которого равна размерности плотности тока. Максвелл назвал это слагаемое плотностьютока смещения:

. (2.12.5)

Сумму же тока проводимости и тока смещения называют пол­нымтоком. Его плотность

. (2.12.6)

Согласно (2.12.4) линии полного тока являются непрерывными в отличие от линий тока проводимости. Токи проводимости, если они не замкнуты, замыкаются токами смещения.

Сейчас мы убедимся в том, что введение полного тока устра­няет трудность, связанную с зависимостью циркуляции векто­ра от выбора поверхности, натягиваемой на контур Г. Ока­зывается, для этого достаточно в правой части уравнения (2.12.1) вместо тока проводимости ввести полный ток, т. е. ве­личину

(2.12.7)

В самом деле, правая часть (2.12.7) представляет собой сумму тока проводимости I и тока смещения Iсм: Iполн = I + Iсм. По­кажем, что полный ток Iполн будет одинаков и для поверхности S, и для поверхности S’, натянутых на один и тот же контур Г. Для этого применим (2.12.4) к замкнутой поверхности, со­ставленной из поверхностей S и S’ (рис. б). Учитывая, что для замкнутой поверхности нормаль n направлена наружу, запишем

Теперь, если обернуть нормаль n для поверхности S в ту же сторону, что и для S, то первое слагаемое в последнем уравне­нии изменит знак, и мы получим

что и требовалось доказать. Итак, теорему о циркуляции век­тора , которая была установлена для постоянных токов, можно обобщить для произвольного случая и записать

. (2.12.8)

В таком виде теорема о циркуляции вектора справедлива всегда, свидетельством чему является согласие этого уравне­ния с результатами опыта во всех без исключения случаях.

Несколько замечаний о токе смещения. Следует иметь в виду, что ток смещения эквивалентен току проводимости только в отношении способности создавать магнитное поле. Токи смещения существуют лишь там, где меняется со време­нем электрическое поле. Даже в вакууме всякое изменение во времени электрического поля возбуждает в окружающем пространстве магнитное поле.

В диэлектриках ток смещения состо­ит из двух существенно различных слагаемых. Так как вектор , то отсюда видно, что плотность тока смещения складывается из «истинного» тока смещения и тока поляризации величины, обусловленной движе­нием связанных зарядов. В том, что токи поляризации возбу­ждают магнитное поле, нет ничего неожиданного, ибо эти то­ки по природе своей не отличаются от токов проводимости, так как связаны с движением зарядов. Принципиально новое содержится в утверждении, что и дру­гая часть тока смещения ), которая не связана ни с каким движением зарядов, а обусловлена только изменением электрического поля, также возбуждает магнитное поле.

Открытие этого явления — наиболее существенный и решаю­щий шаг, сделанный Максвеллом при построении теории электромагнитного поля. Это открытие вполне аналогично от­крытию электромагнитной индукции, согласно которому пе­ременное магнитное поле возбуждает вихревое электрическое поле. Следует также отметить, что открытие Максвеллом тока смещения — чисто теоретическое открытие, причем первосте­пенной важности.

Уравнения Максвелла в интегральной форме.

С введением тока смещения макроскопическая теория электромагнитного поля была блестяще завершена. Открытие тока смещения позволило Максвеллу создать единую теорию электри­ческих и магнитных явлений. Теория Максвелла не только объяснила все разрозненные явления электричества и магне­тизма (причем с единой точки зрения), но и предсказала ряд новых явлений, существование которых подтвердилось впо­следствии.

До сих пор мы рассматривали отдельные части этой теории. Теперь можно представить всю картину в виде системы фун­даментальных уравнений электродинамики, называемыхурав­нениями Максвелла внеподвижных средах. Этих уравнений четыре (мы уже познакомились с каждым из них в отдельно­сти в предшествующих разделах, а сейчас просто соберем их все вместе). В интегральной форме система уравнений Мак­свелла имеет следующий вид:

(2.12.9)

где ρ — объемная плотность сторонних зарядов, — плотность тока проводимости.

Эти уравнения в сжатой форме выражают всю совокупность наших сведений об электромагнитном поле.

Содержание этих уравнений заключается в следующем:

1. Циркуляция вектора по любому замкнутому контуру рав­на со знаком минус производной по времени от магнитного потока через любую поверхность, ограниченную данным кон­туром. При этом под понимается не только вихревое элек­трическое поле, но и электростатическое (циркуляция послед­него, как известно, равна нулю).

2. Поток вектора сквозь любую замкнутую поверхность ра­вен алгебраической сумме сторонних зарядов, охватываемых этой поверхностью.

3. Циркуляция вектора по любому замкнутому контуру рав­на полному току (току проводимости и току смещения) через произвольную поверхность, ограниченную данным контуром.

4. Поток вектора сквозь произвольную замкнутую поверх­ность всегда равен нулю.

Из уравнений Максвелла для циркуляции векторов и сле­дует, что электрическое и магнитное поля нельзя рассматри­вать как независимые: изменение во времени одного из этих полей приводит к появлению другого. Поэтому имеет смысл лишь совокупность этих полей, описывающая единое электро­магнитное поле.

Если же поля стационарны ( = const и = const), то уравне­ния Максвелла распадаются на две группы независимых урав­нений:

(2.12.10)

В этом случае электрическое и магнитное поля независимы друг от друга, что и позволило нам изучить сначала постоян­ное электрическое поле, а затем независимо от него и посто­янное магнитное поле.

Необходимо подчеркнуть, что рассуждения, с помощью кото­рых можно придти к уравнениям Максвелла, ни в коей мере не могут претендовать наих доказательство. Эти уравнения нель­зя «вывести», они являются основными аксиомами, постула­тами электродинамики, полученными путем обобщения опыт­ных фактов. Эти постулаты играют в электродинамике такую же роль, как законы Ньютона в классической механике или начала термодинамики.

Уравнения Максвелла в интегральной форме справедливы и в тех случаях, когда существуют по­верхности разрыва — поверхности, на которых свойства сре­ды или полей меняются скачкообразно.В этих уравнениях содержатся и граничные условия, которые име­ют уже знакомый нам вид:

(здесь первое и последнее условия относятся к случаям, когда на границе раздела нет ни сторонних зарядов, ни токов прово­димости). Заметим также, что приведенные граничные усло­вия справедливы как для постоянных, так и для переменных полей.

Материальные уравнения. Фундаментальные уравнения Мак­свелла еще не составляют полной системы уравнений электро­магнитного поля. Этих уравнений недостаточно для нахожде­ния полей по заданным распределениям зарядов и токов.

Уравнения Максвелла необходимо дополнить соотношениями, в которые входили бы величины, характеризующие индивиду­альные свойства среды. Эти соотношения называютматери­альными уравнениями. Вообще говоря, эти уравнения доста­точно сложны и не обладают той общностью и фундаменталь­ностью, которые свойственны уравнениям Максвелла.

Материальные уравнения наиболее просты в случае достаточно слабых электромагнитных полей, сравнительно медленно ме­няющихся в пространстве и во времени. В этом случае для изотропных сред, не содержащих сегнетоэлектриков и ферро­магнетиков, материальные уравнения имеют следующий вид (он нам уже знаком):

=εε0 , =μμ0 , = ( + *), (2.12.12)

где ε, μ, — известные нам постоянные, характеризующие электрические и магнитные свойства среды (диэлектрическая и магнитная проницаемости и удельное сопротивление). * — на­пряженность поля сторонних сил, обусловленная хи­мическими или тепловыми процессами.

Свойства уравнений Максвелла

Уравнения Максвелла линейны. Они содержат только первые производные полей и по времени и пространственным координатам и первые степени плотности электрических зарядов и токов. Свойство линейности уравнений Максвелла непосредственно связано с принципом суперпозиции: если два каких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей.

Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистски-инвариантными. Это есть следствие принципа относительности, согласно которому все инерциальные системы отсчета физически эквивалентны друг другу. Факт инвариантности уравнений Максвелла (относительно преобразований Лоренца) подтверждается многочисленными опытными данными. Вид уравнений Максвелла при переходе от одной инерциальной системы отсчета к другой не меняется, однако входящие в них величины преобразуются по определенным правилам.

О симметрии уравнений Максвелла. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это обусловлено опять же тем, что в природе существуют электрические заряды, но нет зарядов магнитных (насколько известно в настоящее время). Вместе с тем в нейтральной однородной непроводящей среде, где плотность зарядов и плотность тока проводимости равны нулю, уравнения Максвелла приобретают симметричный вид:

(2.12.13)

Симметрия уравнений относительно электрического и магнитного полей не распространяется лишь на знак перед производными d /dt и . Различие в знаках перед этими производными показывает, что линии вихревого электрического поля, индуцированного изменением поля , образуют с вектором левовинтовую систему, в то время как линии магнитного поля, индуцируемого изменением , образуют с вектором правовинтовую систему (см. рисунок).

Электромагнитные волны. Из уравнений Максвелла следует важный вывод о существовании принципиально нового физического явления: электромагнитное поле способно существовать самостоятельно – без электрических зарядов и токов. При этом изменение его состояния обязательно имеет волновой характер. Поля такого рода называют электромагнитными волнами. В вакууме они всегда распространяются со скоростью, равной скорости света c.

Выяснилось также, что ток смещения ( ) играет в этом явлении первостепенную роль. Именно его присутствие наряду с величиной и означает возможность появления электромагнитных волн. Всякое изменение во времени магнитного поля возбуждает поле электрическое, изменение же поля электрического, в свою очередь, возбуждает магнитное поле. За счет непрерывного взаимопревращения или взаимодействия они и должны сохраняться ‑ электромагнитное возмущение будет распространяться в пространстве.

Теория Максвелла не только предсказала возможность существования электромагнитных волн, но и позволила установить все их основные свойства.

Энергия электромагнитного поля.

Если среда не содержит сегнетоэлектриков и ферромагнетиков (т.е. нет явления гистерезиса) и отсутствуют токи проводимости, то плотность энергии электромагнитного поля (в соответствии с (2.6.10) и (2.11.19)) будет определяться по формуле

. ( 2.12.14 )

Н.А. Тимохова 10 страница

Весь вопрос с ответом

390.Тема: Уравнения Максвелла
Полная система уравнений Максвелла для электромагнитного поля в интегральной форме имеет вид:
,
,
,
0.
Система распадается на две группы независимых уравнений:
, ;
, 0 –
при условии, что …

Весь вопрос с ответом

391.Тема: Законы постоянного тока
Напряжение на концах медного провода диаметром dи длиной l равно . Если взять медный провод диаметром 2d той же длины l и увеличить напряжение в 4 раза, то средняя скорость направленного движения электронов вдоль проводника …

Весь вопрос с ответом

392.Тема: Магнитостатика
Поле создано прямолинейным длинным проводником с током I1. Если отрезок проводника с током I2расположен в одной плоскости с длинным проводником так, как показано на рисунке, то сила Ампера …

Весь вопрос с ответом

393.Тема: Работа. Энергия
Потенциальная энергия частицы задается функцией -компонента (в Н) вектора силы, действующей на частицу в точке А (1, 2, 3), равна …
(Функция и координаты точки А и заданы в единицах СИ.)

Весь вопрос с ответом

394.Тема: Элементы специальной теории относительности
Тело начало двигаться со скоростью, при которой его масса возросла на 30%. При этом длина тела в направлении движения …

Весь вопрос с ответом

395.Тема: Динамика вращательного движения

Диск радиусом 1 м, способный свободно вращаться вокруг горизонтальной оси, проходящей через точку О перпендикулярно плоскости рисунка, отклонили от вертикали на угол и отпустили. В начальный момент времени угловое ускорение диска равно _______

Весь вопрос с ответом

396.Тема: Кинематика поступательного и вращательного движения
Твердое тело вращается вокруг неподвижной оси. Скорость точки, находящейся на расстоянии 10 см от оси, изменяется со временем в соответствии с графиком, представленным на рисунке.

Зависимость угловой скорости тела от времени (в единицах СИ) задается уравнением …

Весь вопрос с ответом

397.Тема: Уравнение Шредингера (конкретные ситуации)
Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками в состоянии с квантовым числом n = 4. Если -функция электрона в этом состоянии имеет вид, указанный на рисунке, то вероятность обнаружить электрон в интервале от до равна …

Весь вопрос с ответом

398.Тема: Явление электромагнитной индукции
Проводящий плоский контур площадью 75 см 2 расположен в магнитном поле перпендикулярно линиям магнитной индукции. Если магнитная индукция изменяется по закону мТл, то ЭДС индукции, возникающая в контуре в момент времени мВ), равна …

Весь вопрос с ответом

399.Тема: Электрические и магнитные свойства вещества
Диамагнетиком является вещество с магнитной проницаемостью …

Весь вопрос с ответом

400.Тема: Электростатическое поле в вакууме
Электростатическое поле создано двумя точечными зарядами: и .

Отношение потенциала поля, созданного первым зарядом в точке А, к потенциалу результирующего поля в этой точке равно …

Весь вопрос с ответом

401.Тема: Уравнения Максвелла
Физический смысл уравнения Максвелла заключается в следующем …

Весь вопрос с ответом

402.Тема: Первое начало термодинамики. Работа при изопроцессах
При изотермическом расширении 0,5 моля газа при температуре 200 К объем увеличился в раз ( ). Работа газа (в Дж) равна …

Весь вопрос с ответом

403.Тема: Распределения Максвелла и Больцмана
В трех сосудах находятся газы, причем для температур и масс молекул газов имеют место следующие соотношения: , На рисунке схематически представлены графики функций распределения молекул идеального газа по скоростям (распределение Максвелла) для этих газов, где – доля молекул, скорости которых заключены в интервале скоростей от до в расчете на единицу этого интервала:

Для графиков этих функций верными являются утверждения, что …

Весь вопрос с ответом

404.Тема: Ядро. Элементарные частицы
На рисунке показана кварковая диаграмма захвата нуклоном -мезона.

Эта диаграмма соответствует реакции …

Весь вопрос с ответом

405.Тема: Ядерные реакции
В результате столкновения нейтрона с ядром наблюдается испускание дейтерия. В результате этой реакции возникает ядро …

Весь вопрос с ответом

406.Тема: Работа. Энергия
Тело движется под действием силы, зависимость проекции которой от координаты представлена на графике:

Работа силы (в ) на пути 4 м равна …

Весь вопрос с ответом

407.Тема: Элементы специальной теории относительности
-мезон, двигавшийся со скоростью (с – скорость света в вакууме) в лабораторной системе отсчета, распадается на два фотона: g1 и g2. В системе отсчета мезона фотон g1 был испущен вперед, а фотонg2 – назад относительно направления полета мезона. Скорость фотона g1 в лабораторной системе отсчета равна …

Весь вопрос с ответом

408.Тема: Законы сохранения в механике
Шар массы , имеющий скорость v, налетает на неподвижный шар массы :

После соударения шары будут двигаться так, как показано на рисунке …

Весь вопрос с ответом

409.Тема: Динамика поступательного движения
Импульс материальной точки изменяется по закону (кг·м/с). Модуль силы (в Н), действующей на точку в момент времени t = 4 c, равен …

Весь вопрос с ответом

410.Тема: Поляризация и дисперсия света
В стеклянной призме происходит разложение белого света в спектр, обусловленное дисперсией света. На рисунках представлен ход лучей в призме. Правильно отражает ход лучей рисунок …

Весь вопрос с ответом

411.Тема: Спектр атома водорода. Правило отбора
На рисунке схематически изображены стационарные орбиты электрона в атоме водорода, согласно модели Бора, а также показаны переходы электрона с одной стационарной орбиты на другую, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области спектра эти переходы дают серию Лаймана, в видимой – серию Бальмера, в инфракрасной – серию Пашена:

Наименьшей частоте кванта в серии Бальмера соответствует переход …

Весь вопрос с ответом

412.Тема: Уравнение Шредингера (конкретные ситуации)
Момент импульса электрона в атоме и его пространственные ориентации могут быть условно изображены векторной схемой, на которой длина вектора пропорциональна модулю орбитального момента импульса электрона. На рисунке приведены возможные ориентации вектора .

Значение орбитального квантового числа и минимальное значение главного квантового числа для указанного состояния соответственно равны …

Весь вопрос с ответом

413.Тема: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
Отношение скоростей протона и α-частицы, длины волн де Бройля которых одинаковы, равно …

Весь вопрос с ответом

414.Тема: Первое начало термодинамики. Работа при изопроцессах
Одному молю двухатомного газа было передано 5155Дж теплоты, при этом газ совершил работу, равную 1000 Дж, а его температура повысилась на ______ K.

Весь вопрос с ответом

415.Тема: Второе начало термодинамики. Энтропия
На рисунке изображен цикл Карно в координатах , где S – энтропия. Адиабатное расширение происходит на этапе …

Весь вопрос с ответом

416.Тема: Ядерные реакции
Из 10 10 атомов радиоактивного изотопа с периодом полураспада 20 мин. через 60 мин. не испытаютпревращения примерно ____ атомов.

Весь вопрос с ответом

417.Тема: Ядро. Элементарные частицы
Для ядерных сил не характерно (-а)

Весь вопрос с ответом

418.Тема: Электрические и магнитные свойства вещества
Точка Кюри для кобальта равна 1403 К. При температуре 1150°С кобальт ведет себя во внешнем магнитном поле как …

Весь вопрос с ответом

419.Тема: Электростатическое поле в вакууме
Электростатическое поле образовано двумя параллельными бесконечными плоскостями, заряженными разноименными зарядами с одинаковой по величине поверхностной плотностью заряда. Расстояние между плоскостями равно d.

Распределение напряженности Е такого поля вдоль оси х, перпендикулярной плоскостям, правильно показано на рисунке …

Весь вопрос с ответом

420.Тема: Законы постоянного тока
Напряжение на концах медного провода диаметром dи длиной l равно . Если взять медный провод диаметром d, но длиной 2l и увеличить напряжение в 4 раза, то среднее время дрейфа электронов от одного конца проводника до другого …

Весь вопрос с ответом

421.Тема: Свободные и вынужденные колебания
Шарик, прикрепленный к пружине и насаженный на горизонтальную направляющую, совершает гармонические колебания.

На графике представлена зависимость проекции силы упругости пружины на ось X от координаты шарика.


Работа силы упругости при смещении шарика из положения B в положение О (в мДж) составляет …

Весь вопрос с ответом

422.Тема: Волны. Уравнение волны
На рисунке представлен профиль поперечной упругой бегущей волны. Согласно рисунку значение волнового числа (в ) равно …

Весь вопрос с ответом

423.Тема: Тепловое излучение. Фотоэффект
При изменении температуры серого тела максимум спектральной плотности энергетической светимости сместился с на . При этом энергетическая светимость …

Весь вопрос с ответом

424.Тема: Поляризация и дисперсия света
Пластинку из оптически активного вещества толщиной поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол . Поле зрения поляриметра станет совершенно темным при минимальной толщине (в мм) пластинки, равной …

Весь вопрос с ответом

425.Тема: Интерференция и дифракция света
Зависимость интенсивности монохроматического излучения длиной волны от синуса угла дифракции представлена на рисунке. Дифракция наблюдается на щели шириной ), равной …

Весь вопрос с ответом

426.Тема: Эффект Комптона. Световое давление
Лазер на рубине излучает в импульсе длительностью энергию в виде почти параллельного пучка с площадью сечения . Если коэффициент отражения поверхности 0,8, давление света на площадку, расположенную перпендикулярно пучку, равно ____ мПа.

Весь вопрос с ответом

427.Тема: Работа. Энергия
Тело массы г бросили с поверхности земли с начальной скоростью м/с под углом 30° к горизонту. Если пренебречь сопротивлением воздуха, средняя мощность, развиваемая силой тяжести за время падения тела на землю, равна …

Весь вопрос с ответом

428.Тема: Динамика поступательного движения
Материальная точка движется под действием силы, изменяющейся по закону . В момент времени проекция импульса (в ) на ось ОХ равна …

Весь вопрос с ответом

429.Тема: Ядерные реакции
При бомбардировке ядер изотопа азота нейтронами образуются изотоп бора и …

Весь вопрос с ответом

430.Тема: Фундаментальные взаимодействия
Установите соответствие между наиболее характерными типами фундаментальных взаимодействий и группами элементарных частиц, участвующих в этих взаимодействиях.
1. Слабое
2. Сильное
3. Гравитационное

Весь вопрос с ответом

431.Тема: Кинематика поступательного и вращательного движения
Частица из состояния покоя начала двигаться по дуге окружности радиуса с угловой скоростью, модуль которой изменяется с течением времени по закону . Отношение нормального ускорения к тангенциальному через 2 секунды равно …

Весь вопрос с ответом

432.Тема: Динамика поступательного движения
Вдоль оси OX навстречу друг другу движутся две частицы с массами , и скоростями м/с, м/с соответственно. Проекция скорости центра масс на ось ОХ (в единицах СИ) равна …

Весь вопрос с ответом

433.Тема: Динамика вращательного движения
Диск начинает вращаться под действием момента сил, график временной зависимости которого представлен на рисунке:

Правильно отражает зависимость момента импульса диска от времени график …

Весь вопрос с ответом

434.Тема: Энергия волны. Перенос энергии волной
В упругой среде плотностью распространяется плоская синусоидальная волна с частотой и амплитудой При переходе волны в другую среду, плотность которой в 2 раза меньше, амплитуду увеличивают в 4 раза, тогда объемная плотность энергии, переносимой волной, увеличится в ____ раз(-а).

Весь вопрос с ответом

435.Тема: Распределения Максвелла и Больцмана
На рисунке представлен график функции распределения молекул идеального газа по скоростям (распределение Максвелла), где – доля молекул, скорости которых заключены в интервале скоростей от до в расчете на единицу этого интервала.

Для этой функции верными являются утверждения, что …

Весь вопрос с ответом

436.Тема: Средняя энергия молекул
Если не учитывать колебательные движения в молекуле водяного пара, то отношение кинетической энергии вращательного движения к полной кинетической энергии молекулы равно …

Весь вопрос с ответом

437.Тема: Тепловое излучение. Фотоэффект
По мере нагревания тела его свечение изменяется следующим образом. При комнатной температуре свечение в видимой области спектра не наблюдается. По мере повышения температуры тело начинает светиться малиновым цветом, переходящим в красный цвет («красное каление»), а затем в белый («белое каление»). Закономерности изменения цвета свечения тела при его нагревании объясняются …

Весь вопрос с ответом

438.Тема: Поляризация и дисперсия света
Для того чтобы уменьшить блеск водной поверхности озера (моря и т.п.), обусловленный отражением от нее солнечных лучей (показатель преломления воды равен 1,33), применяют солнцезащитные очки с поляроидами. С использованием поляроида отраженные солнечные лучи от поверхности озера полностью гасятся, если Солнце находится под углом ______ к горизонту. При этом плоскость пропускания поляроида ориентирована ______ .

Весь вопрос с ответом

439.Тема: Эффект Комптона. Световое давление
Монохроматическое рентгеновское излучение с длиной волны , где комптоновская длина волны для электрона, падает на рассеивающее вещество. При этом отношение длин волн излучения, рассеянного под углами и соответственно, равно …

Весь вопрос с ответом

440.Тема: Законы постоянного тока
На рисунке представлены результаты экспериментального исследования зависимости силы тока в цепи от значения сопротивления, подключенного к источнику постоянного тока. ЭДС источника и его внутреннее сопротивление соответственно равны …

Весь вопрос с ответом

441.Тема: Явление электромагнитной индукции
Проводящая рамка вращается с постоянной угловой скоростью в однородном магнитном поле вокруг оси, лежащей в плоскости рамки и перпендикулярной вектору индукции (см. рис.). На рисунке также представлен график зависимости от времени потока вектора магнитной индукции, пронизывающего рамку.

Если максимальное значение магнитного потока мВб, сопротивление рамки Ом, а время измерялось в секундах, то закон изменения со временем силы индукционного тока имеет вид …

Весь вопрос с ответом

442.Тема: Электрические и магнитные свойства вещества
Парамагнетиком является вещество с магнитной проницаемостью …

Весь вопрос с ответом

443.Тема: Энергия волны. Перенос энергии волной
Если в электромагнитной волне, распространяющейся в вакууме, значение напряженности электрического поля равно: , объемная плотность энергии , то напряженность магнитного поля составляет _______

Весь вопрос с ответом

444.Тема: Свободные и вынужденные колебания
На рисунках изображены зависимости от времени координаты и ускорения материальной точки, колеблющейся по гармоническому закону.

Циклическая частота колебаний точки равна …

Весь вопрос с ответом

445.Тема: Волны. Уравнение волны
Две точки лежат на прямой, вдоль которой распространяется волна со скоростью 330 м/с. Период колебаний 0,02 с, расстояние между точками 55 см. Разность фаз колебаний в этих точках составляет …

Весь вопрос с ответом

446.Тема: Законы сохранения в механике
Тело массы m, прикрепленное к пружине с жесткостью k, может без трения
двигаться по горизонтальной поверхности (пружинный маятник).

График зависимости кинетической энергии тела от величины его смещения из положения равновесия имеет вид, показанный на рисунке …

Весь вопрос с ответом

447.Тема: Кинематика поступательного и вращательного движения
Точка М движется по спирали с равномерно возрастающей скоростью в направлении, указанном стрелкой. При этом величина полного ускорения точки …

Весь вопрос с ответом

448.Тема: Элементы специальной теории относительности
Нестабильная частица движется со скоростью 0,6 с (с – скорость света в вакууме). Тогда время ее жизни в системе отсчета, относительно которой частица движется ______%.

Весь вопрос с ответом

449.Тема: Работа. Энергия
На рисунке показаны тела одинаковой массы и размеров, вращающиеся вокруг вертикальной оси с одинаковой частотой. Момент импульса первого тела Дж·с. Если кг, см, то кинетическая энергия второго тела (в мДж) равна …

Весь вопрос с ответом

450.Тема: Распределения Максвелла и Больцмана
В трех одинаковых сосудах находится одинаковое количество газа, причем

На рисунке представлены графики функций распределения молекул идеального газа по скоростям (распределение Максвелла), где – доля молекул, скорости которых заключены в интервале скоростей от до в расчете на единицу этого интервала.

Для этих функций верными являются утверждения, что …

Весь вопрос с ответом

451.Тема: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
Отношение длин волн де Бройля для протона и α-частицы, имеющих одинаковую кинетическую энергию, равно …

Весь вопрос с ответом

452.Тема: Интерференция и дифракция света
Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке (установка для наблюдения колец Ньютона). Если на плоскую поверхность линзы свет с длиной волны 0,6 мкм падает нормально, то толщина воздушного зазора (в нм) в том месте, где в отраженном свете видно первое светлое кольцо, равна …

Весь вопрос с ответом

453.Тема: Тепловое излучение. Фотоэффект
На рисунке представлено распределение энергии в спектре излучения абсолютно черного тела в зависимости от длины волны для температуры . При увеличении температуры в 2 раза длина волны (в ), соответствующая максимуму излучения, будет равна …

Дата добавления: 2014-10-31 ; просмотров: 42 ; Нарушение авторских прав

Уравнения Максвелла в интегральной и дифференциальной форме

Вы будете перенаправлены на Автор24

Введение тока смещения позволило Дж. Максвеллу создать теорию, которая объяснила все известные на тот момент явления из области электромагнетизма и позволила выдвинуть ряд новых гипотез, которые позднее были подтверждены.

В основу данной теории легли уравнения Максвелла, которые в электромагнетизме играют такую же роль, как начала в термодинамике или законы Ньютона в классической механике.

Уравнения Максвелла в дифференциальной форме.

В настоящей интерпретации система уравнений Максвелла имеет четыре структурных векторных уравнения:

Первое уравнение устанавливает связь между полным током (суммой тока проводимости и током смещения) и магнитным полем, которое они вызывают.

Второе уравнение является выражением закона электромагнитной индукции в интерпретации Максвелла (переменное магнитное поле — один из источников возникновения электрического поля).

Третье уравнение — указывает на факт отсутствия магнитных зарядов.

Четвертое уравнение говорит о том, что источниками электрического поля являются электрические заряды.

Уравнения (1) — (4) являются уравнениями Максвелла в дифференциальной форме. Каждое из векторных уравнений эквивалентно трем скалярным уравнениям, которые связывают компоненты векторов в правых и левых частях выражений.

Для того, чтобы применять систему уравнений Максвелла для расчета конкретных полей, уравнения данной системы дополняются материальными уравнениями, которые связывают векторы $\overrightarrow\ и\ \overrightarrow$ c вектором $\overrightarrow$, а вектор $\overrightarrow$ c вектором $\overrightarrow$. Эти равнения имеют вид:

где величины $\varepsilon $,$\ \mu $, $\sigma $ — материальные постоянные, характеризующие свойства среды.

Если уравнения (1) — (4) являются фундаментальными, то относительно уравнений (5) надо отметить, что они выполняются совсем не всегда. Так, если речь идет о нелинейных явлениях, получение материальных уравнений составляет отдельную научную задачу.

Готовые работы на аналогичную тему

Уравнения Максвелла в интегральной форме

Систему структурных уравнений Максвелла можно представить в интегральной форме. Так, если проинтегрировать уравнение (1) по произвольной поверхности $S$:

По теореме Стокса левая часть выражения (6) преобразуется к виду:

где интеграл в правой части берется по контуру $L$, который ограничивает поверхность $S$. Если считать, что контур и поверхность неподвижны, то операции дифференцирования по времени и интегрирования по поверхности можно поменять местами в выражении (6) левой части, получим:

здесь интеграл $\int\limits_S<\overrightarrowd\overrightarrow>$ является функцией только от времени, поэтому можно заменить частную производную обычной. Интегрируя уравнение (2) подобным образом, получим второе уравнение системы Максвелла:

Если проинтегрировать уравнение (3) по объему $V$, и использовать для преобразования левой части теорему Остроградского — Гаусса в интеграл по замкнутой поверхности $S$, которая ограничивает объем $V$, то получим:

Аналогичную процедуру проводят с уравнением (4). Получается:

Так получают систему уравнений Максвелла в интегральной форме:

Уравнения Максвелла применимы к поверхностям любого размера. Эти уравнения описывают электрические и магнитные поля в покоящихся средах.

Задание: Ток, текущий по обмотке прямого соленоида, который имеет радиус $R$, изменяется так, что модуль индуктивности магнитного поля внутри соленоида растет в соответствии с законом: $B=Ct^2,\ $где $C=const.$ Запишите функцию тока смещения $j_\left(r\right),$ где $r$ — расстояние от оси соленоида.

Решение:

По определению, плотность тока смещения можно записать как:

Используя одно из уравнений системы Максвелла:

найдем напряженность электрического поля, которое порождается переменным магнитным полем, а зная связь напряжённости электрического поля и электрического смещения:

получим функцию $D(r)$.

Итак, используя уравнение изменения индукции магнитного поля из условий задачи, найдем частную производную $\frac<\partial \overrightarrow><\partial t>:$

Для $r \[2\pi rE=-\pi r^22Ct\to E=-rCt\to D=-C\varepsilon <\varepsilon >_0rt\to j_=-C\varepsilon <\varepsilon >_0r.\]

Для $r>R$, из (1.2) — (1.4) получим:

Для $r=R$, из (1.2) — (1.4) найдем ток смещения:

Ответ: $j_=-C\varepsilon <\varepsilon >_0r\ \left(rR\right),\ j_=-C\varepsilon <\varepsilon >_0R\ \left(r=R\right).$

Задание: Запишите систему уравнений Максвелла для стационарных полей ($\overrightarrow=const,\overrightarrow=const\ $) в интегральной форме.

Решение:

В том случае, если поля стационарны, система уравнений максвелла распадается на две группы независимых уравнений. Первую группу составляют уравнения электростатики:

Вторая группа — уравнения магнитостатики:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 02 03 2021


источники:

http://lektsii.com/1-1217.html

http://spravochnick.ru/fizika/uravneniya_maksvella/uravneniya_maksvella_v_integralnoy_i_differencialnoy_forme/

Читайте также:
  1. D. Қолқа доғасынан 1 страница
  2. D. Қолқа доғасынан 2 страница
  3. D. Қолқа доғасынан 3 страница
  4. D. Қолқа доғасынан 4 страница
  5. D. Қолқа доғасынан 5 страница
  6. D. Қолқа доғасынан 6 страница
  7. D. Қолқа доғасынан 7 страница
  8. D. Қолқа доғасынан 8 страница
  9. D. Қолқа доғасынан 9 страница
  10. Hand-outs 1 страница