Система регрессионных уравнений временного ряда

Структура регрессии машинного обучения временных рядов

Дата публикации Apr 6, 2019

Введение

Время! Одна из самых сложных концепций во Вселенной. Я много лет изучал физику и видел, как самые блестящие ученые пытаются справиться с концепцией времени. В машинном обучении даже мы далеки от тех сложных физических теорий, в которых изменяется общее понимание концепции времени, существование времени и последовательность наблюдений в проблеме ОД могут значительно усложнить проблему.

Машинное обучение для временных рядов:

Временной ряд — это последовательность наблюдений, сделанных последовательно во времени. Прогнозирование временных рядов включает в себя выбор моделей, затем подгонку их к историческим данным, а затем их использование для прогнозирования будущих наблюдений. Поэтому, например, min (s), day (s), month (s), ago измерения используются в качестве входных данных для прогнозирования

следующие минуты, день (ы), месяц (ы). Шаги, которые, как считается, сдвигают данные назад во времени (последовательности), называемые временами задержки или запаздывания. Следовательно, проблема временного ряда может быть преобразована в контролируемый ML, добавляя задержки измерений в качестве входных данных контролируемого ML. см. рис.3 справа. Как правило, исследуйте количество лагов как гиперпараметр.

Перекрестная проверка для временных рядов

Перекрестная проверка временных рядов отличается от проблем машинного обучения тем, что время или последовательность не задействованы. В случае отсутствия времени мы выбираем случайное подмножество данных в качестве набора проверки для оценки точности измерения. Во временных рядах мы часто прогнозируем ценность в будущем. Таким образом, данные проверки всегда должны происходитьпоследанные обучения. Есть две схемыраздвижное окноа такжеМетоды проверки прямого цепочки, что может быть использовано для временного ряда CV.

На рис. 5 сверху показан метод скользящего окна. Для этого метода мы тренируемся на n-точках данных и проверяем прогноз на следующих n-точках данных, сдвигая окно 2n обучения / проверки во времени для следующего шага. На рис. 5 внизу показан метод прямой цепочки. Для этого метода мы обучаемся последним n-точкам данных и проверяем прогноз на следующих m-точках данных, сдвигая окно обучения и проверки n + m во времени. Таким образом, мы можем оценить параметры нашей модели. Чтобы проверить достоверность модели, мы можем использовать блок данных в конце нашего временного ряда, который зарезервирован для тестирования модели с изученными параметрами.

На рис. 6. показано, как работает прямое CV. Здесь есть одно отставание. Таким образом, мы тренируем модель с первой по третью секунды / мин / час / день и т. Д., Затем проверяем далее и так далее. Поскольку теперь мы знакомимся с проблемой TS, давайте выберем проблему временных рядов и построим модель прогнозирования.

Прогнозирование недельных продаж

Представьте себе, что менеджер магазина попросил нас построить модель ML для прогнозирования количества продаж на следующую неделю. Модель должна запускаться каждое воскресенье, а результат прогноза должен сообщаться каждое утро понедельника. Затем менеджер может принять решение о количестве заказов на неделю. Менеджер предоставляет нам данные о продажах 811 товаров за 52 недели. Данные о продажах можно найти вUCI Repositoryилиkaggle,

Давайте посмотрим на данные.

Многие исследователи данных могут создать единую модель для каждого продукта для прогнозирования количества продаж. И хотя это может хорошо работать, у нас могут быть проблемы из-за наличия только 52 точек данных для каждой модели, что действительно мало! Хотя такой подход возможен, он не может быть лучшим решением. Кроме того, если между числом продаж двух или более продуктов существует взаимодействие, мы можем пропустить их взаимодействие, построив единую модель для каждого продукта. Поэтому в этом посте мы рассмотрим, как мы можем построить модели прогнозирования для нескольких временных рядов.

Подготовка данных

Необработанные данные имеют столбец для кода продукта и 52 недели для продаж. Во-первых, мы собираемся создать новый фрейм данных, объединив данные за недели. Таким образом, новый фрейм данных имеет три столбца: код продукта, неделя и объем продаж. Кроме того, «W» и «P» исключены из недели и продукта соответственно. Итак, давайте посмотрим на голову и хвост нового фрейма данных

Чтобы ознакомиться с набором данных, распределение продаж представлено на рис.7. Видно, что существует большое количество продуктов с очень небольшим объемом продаж, и данные также смещаются влево. Влияние проблемы на моделирование будет обсуждаться позже.

Основное проектирование

Поскольку целью этого поста не является Feature Engineering for TS, мы постараемся сделать эту часть максимально простой. Давайте создадим две функции, которые обычно используются для временных рядов. Один шаг назад во времени, 1 лаг (смещение = 1) и разница между количеством покупок неделю назад (W 1) и предыдущей неделей, то есть две недели назад (W2). После этого, поскольку из-за запаздывания и различий в наборе данных есть ноль, см. Рис. 4, мы их отбрасываем. Поэтому, когда мы смотрим на заголовок фрейма данных, он начинается с недели = 2.

Классы «ToSupervised» и «ToSupervisedDiff», код 1 и код 2, показанные в разделе кодирования, используются для получения нового кадра данных через простой конвейер:

Теперь данные имеют правильную форму для их использования на контролируемой ОД.

Прямая перекрестная проверка:

Другая проблема, когда мы работаем над временными рядами, нам приходится иметь дело с его резюме для временных рядов. Мы выбрали прямую цепочку для проверки модели. Чтобы избежать очень хорошей модели в течение небольшого количества недель, мы будем использовать каждую неделю от 40 до 52, повторяя процесс по одной за раз, и вычислять счет. Следовательно, k-кратный код в этой схеме можно найти в C. 3.

Поскольку этот пост является просто демонстрацией, я не разделяю тестовый набор данных. В реальном проекте всегда оставляйте несколько периодов в виде набора тестовых данных для оценки модели на невидимых данных.

метрический

Поскольку проблема заключается в регрессии, существует несколько известных метрик для оценки модели, таких как среднеквадратическая ошибка (MSE), средняя абсолютная ошибка (MAE), среднеквадратичная ошибка (RMSE), среднеквадратичная ошибка журнала (RMSLE) R-квадрат и пр. У каждой из этих метрик есть свой вариант использования, и они по-разному наказывают ошибку, хотя между ними также есть некоторые сходства. В этом посте RMSLE выбран для оценки модели.

Исходные данные:

Обычно, когда мы строим модель, мы можем прийти с очень простым предположением, что мы ожидаем, что использование ML может улучшить ее. Здесь, давайте предположим, что количество каждого продукта продается на текущей неделе, оно будет таким же на следующую неделю. Это означает, что если продукт-1 будет продаваться 10 раз в неделю, его количество продаж будет таким же, как и в течение недели 2. Как правило, это не плохое предположение. Итак, давайте рассмотрим это предположение в качестве нашей базовой модели.

Базовая модель закодирована в C. 5, давайте посмотрим, как работает базовая модель

Сгиб: 0, ошибка: 0,520
Сгиб: 1, ошибка: 0,517
Сгиб: 2, ошибка: 0,510
Сгиб: 3, ошибка: 0.508
Сгиб: 4, ошибка: 0,534
Сгиб: 5, ошибка: 0,523
Сгиб: 6, ошибка: 0,500
Сгиб: 7, ошибка: 0,491
Сгиб: 8, ошибка: 0.506
Сгиб: 9, ошибка: 0,505
Сгиб: 10, ошибка: 0,522
Сгиб: 11, ошибка: 0,552
Общая ошибка 0.516

Здесь, от 0 до 11 указывают на неделю от 40 до недели = 52. Среднее значение RMSLE для базовой модели за эти 12 недель составляет 0,51. Это можно рассматривать как большую ошибку, которая может возникнуть из-за того, что огромное количество предметов было продано очень небольшими суммами, как показано на фиг.7.

Модели машинного обучения:

Теперь мы применим ML для улучшения базового прогноза. Давайте определим класс регрессора временных рядов, C. 5, который работает с нашей перекрестной проверкой временных рядов. Этот класс получает резюме и модель, а также возвращает прогноз модели и ее оценку. Существует широкий спектр алгоритмов ML, которые можно использовать в качестве оценщика. Здесь мы выбираем случайный лес. Проще говоря, RF можно рассматривать как комбинацию суммирования и случайного выбора столбцов функций поверх деревьев решений. Следовательно, это уменьшает дисперсию предсказания модели дерева решений. Таким образом, он обычно имеет лучшую производительность, чем одно дерево, и имеет более низкую производительность, чем методы ансамбля, которые предназначены для уменьшения ошибки смещения модели дерева решений.

Сгиб: 0, ошибка: 0,4624
Сгиб: 1, ошибка: 0,4596
Сгиб: 2, ошибка: 0,4617
Сгиб: 3, ошибка: 0,4666
Сгиб: 4, ошибка: 0,4712
Сгиб: 5, ошибка: 0,4310
Сгиб: 6, ошибка: 0,4718
Сгиб: 7, ошибка: 0,4494
Сгиб: 8, ошибка: 0,4608
Сгиб: 9, ошибка: 0,4470
Сгиб: 10, ошибка: 0,4746
Сгиб: 11, ошибка: 0,4865
Общая ошибка 0.4619

Кажется, что модель работает и ошибка уменьшается. Давайте добавим больше лагов и еще раз оценим модель. Поскольку мы построили конвейер, добавить больше лагов было бы очень просто.

Сгиб: 0, ошибка: 0,4312
Сгиб: 1, ошибка: 0,4385
Сгиб: 2, ошибка: 0,4274
Сгиб: 3, ошибка: 0,4194
Сгиб: 4, ошибка: 0,4479
Сгиб: 5, ошибка: 0,4070
Сгиб: 6, ошибка: 0,4395
Сгиб: 7, ошибка: 0,4333
Сгиб: 8, ошибка: 0,4387
Сгиб: 9, ошибка: 0,4305
Сгиб: 10, ошибка: 0,4591
Сгиб: 11, ошибка: 0,4534
Общая ошибка 0.4355

Кажется, что ошибка предсказания снова уменьшается, и модель учится больше. Мы можем продолжить добавлять лаги и посмотреть, как меняется производительность модели; однако мы отложим этот процесс до тех пор, пока не будем использовать LGBM в качестве оценщика.

Статистические преобразования:

Распределение продаж, рис. 7 показывает, что данные смещаются в сторону низкого количества продаж или влево. Обычно преобразования Log полезны при применении к искаженным распределениям, так как они имеют тенденцию расширять значения, попадающие в диапазон более низких величин, и имеют тенденцию сжимать или уменьшать значения, попадающие в диапазон более высоких величин. Интерпретируемость моделей изменяется, когда мы выполняем статистические преобразования, поскольку коэффициенты больше не говорят нам об исходных характеристиках, а о преобразованных признаках. Поэтому, в то время как мы применяем np.log1p к номеру продаж, чтобы преобразовать его распределение, чтобы стать ближе к нормальному распределению, мы также применяем np.expm1 к результату прогноза, см. C. 6, TimeSeriesRegressorLog. Теперь повторим расчет с указанным преобразованием

так что у нас есть

Сгиб: 0, ошибка: 0,4168
Сгиб: 1, ошибка: 0,4221
Сгиб: 2, ошибка: 0,4125
Сгиб: 3, ошибка: 0,4035
Сгиб: 4, ошибка: 0,4332
Сгиб: 5, ошибка: 0,3977
Сгиб: 6, ошибка: 0,4263
Сгиб: 7, ошибка: 0,4122
Сгиб: 8, ошибка: 0,4301
Сгиб: 9, ошибка: 0,4375
Сгиб: 10, ошибка: 0,4462
Сгиб: 11, ошибка: 0,4727
Общая ошибка 0.4259

Это показывает, что производительность модели улучшается, а ошибка снова уменьшается.

Ансамбль МЛ:

Теперь пришло время использовать более сильную оценку ML для улучшения прогнозирования. Мы выбрали LightGBM в качестве нового оценщика. Итак, давайте повторим расчет

Сгиб: 0, ошибка: 0,4081
Сгиб: 1, ошибка: 0,3980
Сгиб: 2, ошибка: 0,3953
Сгиб: 3, ошибка: 0,3949
Сгиб: 4, ошибка: 0,4202
Сгиб: 5, ошибка: 0,3768
Сгиб: 6, ошибка: 0,4039
Сгиб: 7, ошибка: 0,3868
Сгиб: 8, ошибка: 0,3984
Сгиб: 9, ошибка: 0,4075
Сгиб: 10, ошибка: 0,4209
Сгиб: 11, ошибка: 0,4520
Общая ошибка 0,4052

Опять же, мы успешно улучшили прогноз.

Настройка количества шагов:

В этом разделе мы собираемся настроить количество шагов (лагов / различий). Я намеренно откладываю настройку шагов в этом разделе после использования LGBM в качестве регрессора, потому что это быстрее, чем RF. Рис. 8 ясно показывает, что при добавлении дополнительных шагов в модель ошибка уменьшается; однако, как мы ожидаем, видно, что после преодоления порога в пределах шагов = 14, добавление дальнейших шагов не уменьшит ошибку значительно. Возможно, вам будет интересно определить порог ошибки для остановки этого процесса. Шаги = 20 выбран для остальной части расчета. Пожалуйста, проверьте код C 7. A и B для настройки.

Гиперпараметры настройки:

В этой части мы собираемся реализовать метод поиска по сетке таким образом, чтобы мы могли применять его по конвейеру, см. Код 8 A и B. C.8. Код заимствован из библиотеки Sklearn. Целью этой части является не создание полностью настроенной модели. Мы пытаемся показать, как рабочий процесс. После небольшой настройки ошибка становится

Когда лучшие параметры настройки находятся на грани параметров настройки, это означает, что мы должны пересмотреть диапазон гиперпараметров и пересчитать модель, хотя мы не будем делать это на этом посту.

Прогноз против реальных продаж

На рис. 9 показано значение прогнозирования в зависимости от объема продаж на 52 неделе. Видно, что модель хорошо работает для показателей продаж до 15; однако, он прогнозирует плохо для продаж около 30. Как мы обсуждаем на рис. 7, мы могли бы построить разные модели для различного диапазона продаж, чтобы преодолеть эту проблему и иметь более надежную модель прогнозирования, хотя дальнейшее моделирование выходит за рамки этого поста и этот пост уже так долго.

Наконец, на рис. 10 показаны все наши попытки прогнозировать продажи. Мы начали с очень простого предположения в качестве базовой линии и попытались улучшить его, используя различные лаги / различия, статистическое преобразование и применяя различные алгоритмы машинного обучения для улучшения прогнозирования. Базовая ошибка составляла 0,516, а ошибка настроенной модели — 0,3868, что означает снижение ошибки на 25%.

Есть еще много способов улучшить представленную модель, например, правильно обрабатывать продукты как категориальные переменные, расширять возможности инженера, настраивать гиперпараметры, использовать различные алгоритмы машинного обучения, а также смешивать и складывать.

Вывод:

Мы построили конвейер прогнозирования временных рядов для прогнозирования еженедельных продаж. Мы начали с простого логического предположения в качестве базовой модели; затем мы могли бы уменьшить базовую ошибку на 25%, построив конвейер, включающий разработку базовых функций, статистическое преобразование, применение Random forest и LGBM и, наконец, их настройку. Кроме того, мы обсудили различные методы перекрестной проверки временных рядов. Кроме того, мы покажем, как мы можем использовать базовые классы Sklearn для построения конвейера.

Кодирование:

Полный код этого поста можно найти на моемGitHub,

Обзор моделей прогнозирования временных рядов: проба пера

В рамках своей диссертации «Модель прогнозирования по выборке максимального подобия» мне нужно было делать обзор моделей прогнозирования. Кроме обзора, я сделала вариант классификации, который мне тогда не очень удался. Классификацию уже немного поправила, теперь хочется разобраться в существующих моделях прогнозирования временных рядов. Такие модели называют стохастическими моделями (stochastic models).

По оценке некто Тихонова в его «Прогнозировании в условиях рынка» на сегодняшний день (2006 год) существует около 100 методов и моделей прогнозирования. Эта оценка звучит бредово, я полно разбирала ее! Давайте теперь вместе разберемся, какие же модели прогнозирования временных рядов существуют на сегодняшний день.

  1. Регрессионные модели прогнозирования
  2. Авторегрессионные модели прогнозирования (ARIMAX, GARCH, ARDLM)
  3. Модели экспоненциального сглаживания (ES)
  4. Модель по выборке максимального подобия (MMSP)
  5. Модель на нейронных сетях (ANN)
  6. Модель на цепях Маркова (Markov chains)
  7. Модель на классификационно-регрессионных деревьях (CART)
  8. Модель на основе генетического алгоритма (GA)
  9. Модель на опорных векторах (SVM)
  10. Модель на основе передаточных функций (TF)
  11. Модель на нечеткой логике (FL)
  12. Что еще.

Регрессионные модели прогнозирования

Регрессионные модели прогнозирования одни из старейших, однако нельзя сказать, что она нынче очень популярны. Регрессионными моделями являются:

  • Простая линейная регрессия (linear regression)
  • Множественная регрессия (multilple regression)
  • Нелинейная регрессия (nonlinear regression)

Лучшая книга по регрессии — архигениальная книга — Draper N., Smith H. Applied regression analysis. Ее можно скачать в сети в djvu. Лучше читать в английском варианте, написано в высшей степени для людей.

Авторегрессионные модели прогнозирования

Это широчайший и один из двух наиболее широко применимых классов моделей! Книг по этим моделям много, примеров применения много.

  • ARIMAX (autoregression integrated moving average extended), об этом написано чрезвычайно много. Основой основ является книга Box, George and Jenkins, Gwilym (1970) Time series analysis: Forecasting and control. Лучше читать на английском!
  • GARCH (generalized autoregressive conditional heteroskedasticity), здесь множество модификаций FIGARCH, NGARCH, IGARCH, EGARCH, GARCH-M.
  • ARDLM (autoregression distributed lag model), об этом только в учебниках по эконометрике.

Вопрос к аудитории: посоветуйте хорошую и понятную (!) книгу/статью по GARCH и MLE.

Модели экспоненциального сглаживания

  • Экспоненциальное сглаживание (exponential smoothing)
  • Модель Хольта или двойное экспоненциальное сглаживание (double exponential smoothing)
  • Модель Хольта-Винтерса или тройное экспоненциальное сглаживание (triple exponential smoothing)

По всем трем моделям лучшая из мною читанного статья Prajakta S.K. Time series Forecasting using Holt-Winters Exponential Smoothing.

Модель по выборке максимального подобия

Это моя модель (model on the most similar pattern), на ряде задач показывает высокую эффективность. К рядам FOREX и бирж применять не стоит, проверяли, работает неважно. Ее описание можно найти в диссертации по ссылке выше, кроме того, можно скачать пример реализации в MATLAB.

Модель на нейронных сетях

Вторая из двух наиболее популярных моделей прогнозирования временных рядов. Лучшая книга с примерами, на мой вкус, Хайкин С. Нейронные сети: полный курс. Книгу с примерами в MATLAB можно скачать по ссылке.

Модель на цепях Маркова

Модель на цепях Маркова фигурирует в множестве обзоров, однако мне не удалось найти ни хорошей книги, ни хорошей статьи о ее конкретном применении для прогнозирования временных рядов. Сама эту модель разбирала в курсе теории надежности (учебник Гнеденко), принцип ее расчета хорошо понимаю, кроме того, читала, что ее часто применяют для моделирования финансовых временных рядов.

Вопрос к аудитории: посоветуйте хорошую и понятную (!) книгу/статью по применению цепей Маркова для прогнозирования временных рядов.

Модель на классификационно-регрессионных деревьях

Вот тут материалов немного, но они есть. В частности, неплохая статья по применению этой модели для прогнозирования Hannes Y.Y., Webb P. Classification and regression trees: A User Manual for IdentifyingIndicators of Vulnerability to Famine and Chronic Food Insecurity.

Модель на основе генетического алгоритма

Это странный зверь, такого рода решения я называю «иезуитскими», потому что кажется, что они рождены только для обоснования научной новизны, однако эффективность их невысока. Например, генетический алгоритм применяется для решения задач оптимизации (поиска экстремума), однако некоторые приплели его к прогнозированию временных рядов. Найти внятного материала по этой теме мне не удалось.

Вопрос к аудитории: посоветуйте хорошую и понятную (!) книгу/статью по применению генетического алгоритма для прогнозирования временных рядов.

Модель на опорных векторах

Модель на основе передаточных функций

Модель на нечеткой логике

Все эти модели принадлежат, на мой вкус, классу иезуитских. Например, опорные векторы (SVM) применяется в основном для задач классификации. Нечеткая логика где только не применяется, однако найти ее понятно описанное применение для прогнозирования временных рядов мне не удалось. Хотя в обзорах специалисты почти всегда ее указывают.

Итого

Моделей мы наберем с десяток, со всеми модификациями — два десятка. Хотелось бы, чтобы в комментариях вы не только высказывали мнение, а по возможности делали полезные ссылки на понятные материалы. Лучше на английском!

PS. Всех любителей FOREX и всякого рода бирж большая просьба не долбится ко мне в личку! Вы мне ужасно надоели!

Прогнозирование. Регрессионный анализ, его реализация и прогнозирование

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Сущность метода регрессионного анализа

Одним из методов, используемых для прогнозирования, является регрессионный анализ.

Регрессия – это статистический метод, который позволяет найти уравнение, наилучшим образом описывающее совокупность данных, заданных таблицей.

XX1X2XiXn
YY1Y2YiYn

На графике данные отображаются точками. Регрессия позволяет подобрать к этим точкам кривую у=f(x), которая вычисляется по методу наименьших квадратов и даёт максимальное приближение к табличным данным.

По полученному уравнению можно вычислить (сделать прогноз) значение функции у для любого значения х , как внутри интервала изменения х из таблицы(интерполяция), так и вне его (экстраполяция).

Линейная регрессия

Линейная регрессия дает возможность наилучшим образом провести прямую линию через точки одномерного массива данных (рис.13.1 а). Уравнение с одной независимой переменной, описывающее прямую линию, имеет вид:

где:x – независимая переменная;

y – зависимая переменная;

m – характеристика наклона прямой;

b – точка пересечения прямой с осью у.

Например, имея данные о реализации товаров за год с помощью линейной регрессии можно получить коэффициенты прямой (1) и, предполагая дальнейший линейный рост, получить прогноз реализации на следующий год.

Нелинейная регрессия

Нелинейная регрессия позволяет подбирать к табличным данным нелинейное уравнение (рис. 13.1 рис. 13.1, б.) – параболу, гиперболу и др. Excel реализует нелинейность в виде экспоненты, т.е. подбирает кривую вида:

,

которая позволяет наилучшим образом провести экспоненциальную кривую по точкам данных, которые изменяются нелинейно.

Так, например, данные о росте населения почти всегда лучше описываются не прямой линией, а экспоненциальной кривой. При этом нужно помнить, что достоверное прогнозирование возможно только на участках подъёма или спуска кривой (при отрицательных значениях х), т.к. сама кривая (2) изменяется монотонно, без точек перегиба. Например, делать экспоненциальный прогноз для функции, изменяющейся синусоидально, можно только на участках подъёма или спуска функции, для чего её разбивают на соответствующие интервалы.

Множественная регрессия

Множественная регрессия представляет собой анализ более одного набора данных аргумента х и даёт более реалистичные результаты.

Множественный регрессионный анализ также может быть как линейным, так и экспоненциальным. Уравнение регрессии (1) и (2) примут соответственно вид (3) и (4):

( 3)
( 4)

С помощью множественной регрессии, например, можно оценить стоимость дома в некотором районе, основываясь на данных его площади, размерах участка земли, этажности, вида из окон и т.д.

Использование функций регрессии

В Excel имеется 5 функций для линейной регрессии: ЛИНЕЙН(…)(LINEST), ТЕНДЕНЦИЯ(…), ПРЕДСКАЗ(…), НАКЛОН(…), СТОШУХ(…)) и 2 функции для экспоненциальной регрессии – ЛГРФПРИБЛ(…) и РОСТ(…).

Рассмотрим некоторые из них.

Функция ЛИНЕЙН((LINEST) вычисляет коэффициент m и постоянную b для уравнения прямой (1). Синтаксис функции:

Известные_значения_у и известные_значения_х – это множество значений у и необязательное множество значений х (их вводить необязательно), которые уже известны для соотношения (1).

Константа – это логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0. Если константа имеет значение ИСТИНА или опущено, то b вычисляется обычным образом.

Статистика – это логическое значение, которое указывает требуется ли вывести дополнительную статистику по регрессии.

Если статистика имеет значение ЛОЖЬ (или 0), то функция ЛИНЕЙН возвращает только значения коэффициентов m и b , в противном случае выводится дополнительная регрессионная статистика в виде табл. 13.1 таблица 13.1:

Таблица 13.1. Общий вид выводимого массива статистических показателей при использовании функции ЛИНЕЙН((LINEST)
mnmn-1m2m1b
sensen-1se2se1seb
r 2sey#Н/Д#Н/Д#Н/Д
Fdf#Н/Д#Н/Д#Н/Д
ssregssresid#Н/Д#Н/Д#Н/Д

где: se1 , se2,…,sen – стандартные значения ошибок для коэффициентов m1 , m2,…, mn ;

seb – стандартное значение ошибки для постоянной b (seb равно #Н/Д, т.е. «нет допустимого значения», если конст. имеет значение ЛОЖЬ);

r 2 – коэффициент детерминированности. Сравниваются фактические значения у и значения, получаемые из уравнения прямой; по результатам сравнения вычисляется коэффициент детерминированности, нормированный от 0 до 1. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями у. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений у;

sey – стандартная ошибка для оценки у (предельное отклонение для у);

F – F-cтатистика, или F-наблюдаемое значение. Она используется для определения того, является ли наблюдаемая взаимосвязь между зависимой и независимой переменными случайной или нет;

df – степени свободы. Степени свободы полезны для нахождения F-критических значений в статистической таблице. Для определения уровня надёжности модели нужно сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН;

ssreg – регрессионная сумма квадратов;

ssresid – остаточная сумма квадратов;

#Н/Д – ошибка, означающая «нет доступного значения».

Любую прямую можно задать её наклоном m и у-пересечением:

Наклон ( m ). Для того, чтобы определить наклон прямой, обычно обозначаемый через m , нужно взять 2 точки прямой (х1,у1) и (х2,у2); тогда наклон равен m=(y2-y1)/(x2-x1 ).

у-пересечение ( b ) прямой, обычно обозначаемое через b , является значение у для точки, в которой прямая пересекает ось у.

Уравнение прямой имеет вид: у=mx+b. Если известны значения m и b , то можно вычислить любую точку на прямой, подставляя значения у или х в уравнение. Можно также использовать функцию ТЕНДЕНЦИЯ ( TREND ) (см. ниже).

Если для функции у имеется только одна независимая переменная х, можно получить наклон и у-пересечение непосредственно, используя следующие формулы:

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точными являются модель, используемая функцией ЛИНЕЙН, и значения, получаемые из уравнения прямой.

В случае экспоненциальной регрессии аналогом функции (5) является функция ЛГРФПРИБЛ(LOGEST):

которая отличается лишь тем, что вычисляет коэффициенты m и b для экспоненциальной кривой (2).

Функция ТЕНДЕНЦИЯ(TREND) имеет вид:

возвращает числовые значения, лежащие на прямой линии, наилучшим образом аппроксимирующие известные табличные данные.

Новые_значения_х – это те, для которых необходимо вычислить соответствующие значения у.

Если параметр новые_значения_х пропущен, то считается, что он совпадает с известными х. Назначение остальных параметров функции ТЕНДЕНЦИЯ совпадает с описанными выше.

В случае экспоненциальной регрессии аналогом функции (7) является функция РОСТ(GROWTH):

возвращает стандартную погрешность регрессии – меру погрешности предсказываемого значения у для заданного значения х.

Правила ввода функций

Формулы(5)-(8) являются табличными, т.е. они заменяют собой несколько обычных формул и возвращают не один результат, а массив результатов. Поэтому необходимо соблюдать следующие правила:

  1. Перед вводом одной из формул (5)-(8) выведите блок ячеек, точно совпадающей по размеру с величиной возвращаемого формулой массива результатов. Например, при использовании функции ЛИНЕЙН с выводом статистики нужно выделить массив ячеек, равный табл. 13.1, если параметр статистики равен ЛОЖЬ, достаточно выделить одну строку табл. 13.1.
  2. Наберите функцию в строке формул. При этом слова на русском языке можно набирать строчными буквами, т.к. они являются ключевыми и при вводе Exсel автоматически переведет их в заглавные. Имена ячеек автоматически вводятся латинским шрифтом. Вместо слова ИСТИНА можно вводить числа от 1 до 9 (не 0), а вместо слова ЛОЖЬ – число 0. Если в результате, выполнения функции выводится одно число, можно вводить формулы не вручную, а использовать аппарат Мастера функций.
  3. Одновременно нажмите клавиши Shift+Ctrl+Enter . Результаты вычислений заполнят выделенные ячейки.

Линия тренда

Excel позволяет наглядно отображать тенденцию данных с помощью линии тренда, которая представляет собой интерполяционную кривую, описывающую отложенные на диаграмме данные.

Для того, чтобы дополнить диаграмму исходных данных линией тренда, необходимо выполнить следующие действия:

  • выделить на диаграмме ряд данных, для которого требуется построить линию тренда;
  • щелкнуть правой кнопкой мыши и выбрать команду Добавить линию тренда;
  • в открывшемся окне задать метод интерполяции (линейный, полиномиальный, логарифмический и т. д.), а также через команду Параметры – другие параметры (например, вывод уравнения кривой тренда, коэффициента детерминированности r 2 , направление и количество периодов для экстраполяции (прогноза) и др.);
  • нажать кнопку Закрыть.

Чтобы отобразить на графике (гистограмме и др.) новые, прогнозируемые в результате регрессионного анализа данные, нужно:

  • определить их с помощью функции ТЕНДЕНЦИЯ, РОСТ или другим способом,
  • выделить на диаграмме нужную кривую, щелкнув по ней правой кнопкой мыши,
  • в появившемся окне выбрать команду Выбрать данные…, в появившемся окне выбрать диапазон ячеек с новыми данными вручную или протащив по ним курсор при нажатой левой клавише мыши, нажать ОК.

На диаграмме появится продолжение кривой, построенной по новым данным.

Простая линейная регрессия

Пример 1. Функция ТЕНДЕНЦИЯ(TREND)

а) Предположим, что фирма может приобрести земельный участок в июле. Фирма собирает информацию о ценах за последние 12 месяцев, начиная с марта, на типичный земельный участок. Название первого столбца «Месяц» с данными о номерах месяцев записано в ячейке А1, а второго столбца «Цена» – в ячейке В1. Номера месяцев с 1 по 12 (известные значения х) записаны в ячейки А2…А13. Известные значения у содержат множество известных значений (133 890 руб., 135 000 руб., 135 790 руб., 137 300 руб., 138 130 руб., 139 100 руб., 139 900 руб., 141 120 руб., 141 890 руб., 143 230 руб., 144 000 руб., 145 290 руб.), которые находятся в ячейках В2;В13 соответственно (данные условия). Новые значения х, т.е. числа 13, 14,15,16,17 введём в ячейки А14…А18. Для того чтобы определить ожидаемые значения цен на март, апрель, май, июнь, июль, выделим любой интервал ячеек, например, B14:B18 (по одной ячейке для каждого месяца) и в строке формул введем функцию:

После нажатия клавиш Ctrl+ Shift+Enter данная функция будет выделена как формула вертикального массива, а в ячейках B14:B18 появится результат: <146172;174190;148208;149226;150244>.

Таким образом, в июле фирма может ожидать цену около 150 244 руб.

б) Тот же результат будет получен, если вводить в формулу не все массивы переменных х и у, а использовать часть массивов, которые предусматриваются автоматически по умолчанию. Тогда формула (10) примет вид:

В формуле (11) используется массив по умолчанию (1:2:3:4:5:6:7:8:9:10:11:12) для аргумента «известные_значения_х», соответствующий 12 месяцам, для которых имеются данные по продажам. Он должен был бы быть помещен в формуле (11) между двумя знаками ;;. Массив (13:14:15:16:17) соответствует следующим 5 месяцам, для которых и получен массив результатов (146172:147190:148208:149226:150244).

Элементы массивов разделяет знак «:», который указывает на то, что они расположены по столбцам.

в) Аргумент «новые значения х» можно задать другим массивом ячеек, например, В14:В18, в которые предварительно записаны те же номера месяцев 13,14,15,16,17. Тогда вводимая в строку формул функция примет вид =ТЕНДЕНЦИЯ(В2:В13;;В14:В18).

Пример 2. Функция ЛИНЕЙН

а) Дана таблица изменения температуры в течение шести часов, введённая в ячейки D2 :E7 (табл. 13.2 таблица 13.2).

Требуется определить температуру во время восьмого часа.

Таблица 13.2. Данные для примера 1
DE
1х-№часау-t о , град.
212
323
434
547
6512
7618

Выделим ячейки D8:E12 для вывода результата, введем в строку ввода формулу =ЛИНЕЙН(Е2:Е7;D2:D7;1;1), нажмем клавиши Сtrl+Shift+Enter, в выделенных ячейках появится результат:

3,142857-3,3333333
0,5408482,106302
0,8940882,2625312
33,767444
172,857120,47619

Таким образом, коэффициент m=3,143 со стандартной ошибкой 0,541, а свободный член b=-3,333 со стандартной ошибкой 2,106, т.е. функция, описывающая данные табл. 13.2 таблица 13.2, имеет вид

Стандартные ошибки показывают максимально возможное отклонение параметра от рассчитанной величины. Для у оно составляет 2,263, т.е. реальное значение у может лежать в пределах .

Точность приближения к табличным данным (коэффициент детерминированности r 2 ) составляет 0,894 или 89,4%, что является высоким показателем. При х=8 получим: у=3,143*8-3,333=21,81 град.

б) Тот же результат можно получить, использовав функцию =ТЕНДЕНЦИЯ(Е2:Е7;;G2:G5) для, например, следующих четырёх часов, предварительно введя в ячейки G2 :G5 числа с 7 до 10. Выделив ячейки Н2:Н5, введя в строку формул эту функцию и нажав Сtrl+Shift+Enter, получим в выделенных ячейках массив <18,667;21,80952;24,95238;28,09524>, т.е. для восьмого часа значение град.

в) Функция ПРЕДСКАЗ ( FORECAST ) – позволяет предсказать значение у для нового значения х по известным значениям х и у, используя линейное приближение зависимости у=f(x).

Для данных примера 2 ввод формулы =ПРЕДСКАЗ(8;Е2:Е7;D2:D7) выводит в заранее выделенной ячейке результат 21,809. Новое значение х может быть задано не числом, а ячейкой, в которую записано это число.

Отличие функции ПРЕДСКАЗ от функции ТЕНДЕНЦИЯ заключается в том, что ПРЕДСКАЗ прогнозирует значения функции линейного приближения только для одного нового значения х.

Экспоненциальная регрессия

Пример 3

а) Функция ЛГРФПРИБЛ.

Рассмотрим условие примера 2.

Поскольку функция в табл. 13.2 таблица 13.2 носит явно нелинейный характер, целесообразно искать ее приближение в виде не прямой линии, как в примере 2, а в виде нелинейной кривой. Из всех видов нелинейности (гипербола, парабола, и др.) Excel реализует только экспоненциальное приближение вида у=b*mx c помощью функции ЛГРФПРИБЛ, которая рассчитывает для этого уравнения значения b и m .

Выделим для результата блок ячеек F8:G12 , введём в строку формул Функцию =ЛГРФПРИБЛ(Е2:Е7;D2:D7;1;1), нажмем клавиши Сtrl+Shift+Enter, в выделенных ячейках появится результат:

1,566280151,196513
0,020382990,07938
0,991813340,085268
484,5996874
3,523359210,029083

Таким образом, коэффициент m=1,566, а b=1,197, т.е. уравнение приближающей кривой имеет вид:

со стандартными ошибками для m, b , и у равными 0,02, 0,079 и 0,085 соответственно. Коэффициент детерминированности r 2 =0,992, т.е. полученное уравнение даёт совпадение с табличными данными с вероятностью 99,2%.

Поскольку интерполяция табл. 13.2 таблица 13.2 экспоненциальной кривой даёт более точное приближение (99,2%) и с меньшими стандартными ошибками для m, b и у, в качестве приближающего уравнения принимаем уравнение (13).

При х=8 получим у=1,197*34,363=41,131 град.

б) Функция РОСТ вычисляет прогнозируемое по экспоненциальному приближению значение у для новых значений х, имеет формат:

Выделим блок ячеек F14: F17 , введём формулу =РОСТ(Е2:Е7;D2:D7;G2:G5;ИСТИНА), в выделенных ячейках появится массив чисел <27,6696434;43,3384133;67,8800967;106,319248>, т.е. при х=8 значение функции у=43,34 град. Это значение немного отличается от вычисленного в п. а), поскольку функция РОСТ использует для расчетов линию экспонециального тренда.

Примечание. При выборе экспоненциальной приближающей кривой следует учитывать, что интерполировать ею можно только участки, где функция монотонно возрастает или убывает (при отрицательном аргументе х), т.е. функцию, имеющую точки перегиба (например, параболу, синусоиду, кривую рис. 2 – т. А и др.) следует разбить на участки монотонного изменения от одной точки перегиба до другой и каждый участок интерполировать отдельно. Для рисунка 2 функцию нужно разбить на 2 участка – от начала до т. А и от т. А до конца кривой.

Множественная линейная регрессия

Пример 4

Предположим, что коммерческий агент рассматривает возможность закупки небольших зданий под офисы в традиционном деловом районе. Агент может использовать множественный регрессионный анализ для оценки цены здания под офис на основе следующих переменных:

у – оценочная цена здания под офис;

х1 – общая площадь в квадратных метрах;

х2 – количество офисов;

х3 – количество входов;

х4 – время эксплуатации здания в годах.

Агент наугад выбирает 11 зданий из имеющихся 1500 и получает следующие данные:

АВСDЕ
1х1— площадь, м2х2 – офисых3 – входых4 – срок, лету – цена, у.е.
22310222042000
323332212144000
4235631,533151000
523793243151000
624022353139000
724254323169000
8244821,599126000
924712234142000
1024943323163000
1125174455169000
1225402322149000

«Пол-входа» означает вход только для доставки корреспонденции.

В этом примере предполагается, что существует линейная зависимость между каждой независимой переменной (х1234) и зависимой переменной (у), т.е. ценой зданий под офис в данном районе.

  • выделим блок ячеек А14:Е18 (в соответствии с табл. 13.1 таблица 13.1),
  • введём формулу =ЛИНЕЙН(Е2:Е12;А2:D12;ИСТИНА;ИСТИНА), —
  • нажмём клавиши Ctrl+Shift+Enter ,
  • в выделенных ячейках появится результат:
АВСDE
14-234,2372553,21012529,768227,641352317,83
1513,2680530,6691400,0668385,4293712237,36
160,99674970,5784#Н/Д#Н/Д#Н/Д
17459,7536#Н/Д#Н/Д#Н/Д
1817323933195652135#Н/Д#Н/Д#Н/Д

Уравнение множественной регрессии теперь может быть получено из строки 14:

Теперь агент может определить оценочную стоимость здания под офис в том же районе, которое имеет площадь 2500 м 2 , три офиса, два входа, зданию 25 лет, используя следующее уравнение:

Это значение может быть вычислено с помощью функции ТЕНДЕНЦИЯ:

При интерполяции с помощью функции

для получения уравнения множественной экспоненциальной регрессии выводится результат:

0,998357521,01737921,08301861,000170481510,335
0,000148370,00650410,00487246,033Е-050,1365601
0,991588750,0105158#Н/Д#Н/Д#Н/Д
176,8325486#Н/Д#Н/Д#Н/Д
0,078218510,0006635#Н/Д#Н/Д#Н/Д
#Н/Д#Н/Д#Н/Д#Н/Д#Н/Д

Коэффициент детерминированности здесь составляет 0,992 (99,2%), т.е. меньше, чем при линейной интерполяции, поэтому в качестве основного следует оставить уравнение множественной регрессии (14).

Таким образом, функции ЛИНЕЙН, ЛГРФПРИБЛ, НАКЛОН определяют коэффициенты, свободные члены и статистические параметры для уравнений одномерной и множественной регрессии, а функции ТЕНДЕНЦИЯ, ПРЕДСКАЗ, РОСТ позволяют получить прогноз новых значений без составления уравнения регрессии по значениям тренда.

ЗАДАНИЕ

Вариант задания к данной лабораторной работе включает две задачи. Для каждой из них необходимо составить и определить:

  1. Таблицу исходных данных, а также значений, полученных методами линейной и экспоненциальной регрессии.
  2. Коэффициенты в уравнениях прямой и экспоненциальной кривой (функции ЛИНЕЙН и ЛГРФПРИБЛ), напишите уравнения прямой и экспоненциальной кривой для простой и множественной регрессии.
  3. Погрешности (ошибки) прямой и экспоненциальной кривой, вычислений для коэффициентов и функций, коэффициенты детерминированности. Оценить, какой тип регрессии наилучшим образом подходит для вашего варианта задания.
  4. Прогноз изменения данных, выполненный с использованием линейной и экспоненциальной регрессии (функции ТЕНДЕНЦИЯ, ПРЕДСКАЗ, РОСТ).
  5. Построить гистограмму (или график) исходных данных для задачи 1 (одномерная регрессия), отобразить на ней линию тренда, а также соответствующее ей уравнение и коэффициент детерминированности.

Варианты заданий (номер варианта соответствует номеру компьютера).

  1. На рынке наблюдается стойкое снижение цен на компьютеры. Сделать прогноз, на сколько необходимо будет снизить цену на компьютеры в следующем месяце в вашей фирме, чтобы как минимум сравнять её с ценой на аналогичные компьютеры в конкурирующей фирме, если известна динамика изменения цен на них в конкурирующей фирме за последние 12 месяцев.

Для выполнения задания нужно ввести ряд из 12 ячеек с ценами конкурирующей фирмы, сделать прогноз цены на следующий месяц и др. (см. Задание).

  1. Известна структура расходов фирмы на рекламу в газетах, на радио, в журналах, на телевидении, на наружную рекламу (в процентах от общей суммы), а также оборот фирмы в каждом за последние 6 месяцев. Какой оборот можно ожидать в следующем месяце, если предполагается следующая структура расходов на рекламу: газеты-40%, журналы-40%, радио-5%, телевидение-14%, наружная реклама-1%.

Для выполнения задания нужно составить таблицу со столбцами вида:

Месяцх1-газеты,%х2-журн.,%х3-рад.,%х4-телев.,%х5-нар. рекл.,%Оборот, $
1373412105410000
2383710116411500
339389137413700
440398158417050
541407169420000
6424251710425000

и сделать множественный регрессионный прогноз (см. Задание).

  1. Имеются данные об объеме продаж в расчете на душу населения по хлебу и молоку и данные по годовым доходам на душу за 10 лет. По каждому товару построить модели регрессии для объемов продаж и функции размера доходов. Сделать прогноз о продажах и доходах на следующий год.

Для выполнения задания нужно составить таблицу вида:

Годы1234567891011
х1-хлеб, кг23,526,727,930,131,535,738,340,141,542,8
х2-молоко, л20,452223,825,927,42933,536,838,139,5
У-доход, р.66007200840010500127501473016240170001805018250

и получить два уравнения – у=f(x1) и у=f(x2), сделать прогноз на следующий год для рядов х1, х2, у и др. (см. Задание).

  1. Руководство фирмы провело оценку качеств пяти рекламных агентов по следующим признакам: х1 – эрудиция, х2 – знание предметной области. Полученные средние оценки, нормированные от 0 до 1, были сопоставлены с оценками эффективности деятельности агентов (% успешных сделок от количества возможных). Определить эффективность для агента с усреднёнными качествами. Сравнить её со средней эффективностью упомянутых 5 агентов.

Исходные данные нужно ввести в таблицу вида:

АВСDEFG
1х1-эрудициях2-энергичностьх3-людих4-внешностьх5-знанияЭффективность
2Агент 10,80,20,40,61,076%
3Агент 20,740,30,390,580,9578%
4Агент 30,670,410,350,50,8379%
5Агент 60,590,590,330,470,880%
6Агент 50,50,70,30,40,7481%
7Средняя эффективность пяти агентов
8Средний агент0,50,50,50,50,5

Массив ячеек В2-F6 заполняется произвольными числами от 0 до 1, столбец G2 -G6 – процентами удачных сделок по принципу «Чем выше уровень качеств агента, тем выше эффективность его работы», в ячейке G7 должна быть формула для вычисления среднего значения ячеек G2:G6 , в ячейке G8 нужно вычислить значение эффективности для среднего агента по формуле, полученной в результате множественного регрессионного анализа работы пяти агентов. Остальные пункты – см. Задание.

  1. Автосалон имеет данные о количестве проданных автомобилей «Мерседес» и «БМВ» за последние 4 квартала. Учитывая тенденцию изменения объёма продаж, определить, каких автомобилей нужно закупить больше («Мерседес» или «БМВ») в следующем квартале?

Для выполнения задания нужно составить и заполнить таблицу вида:

Х12345
Мерседес ( Y1 )10121518
БМВ ( Y2 )9101417

сделать прогноз продаж на новый квартал и выполнить другие пункты задания.

  1. Известны следующие данные о 5 недавно проданных подержанных автомобилях: у – стоимость продажи, х1 – стоимость аналогичного нового автомобиля, х2 – год выпуска, х3 – пробег, х4 – количество капитальных ремонтов, х5 – экспертные заключения о состоянии кузова и техническом состоянии автомобилей (по 10-бальной шкале). Определить, сколько может стоить автомобиль с соответствующими характеристиками: 340 000, 1998г., 140000км., 1, 6 (см. пример 4).
  1. Определить минимально необходимый тираж журнала и возможный доход от размещения в нём рекламы в следующем месяце, если известны данные об объёмах продаж этого журнала и доходах от размещения рекламы за последние 12 месяцев (считать, что расценки на рекламу не менялись).

Для выполнения задания нужно составить таблицу вида:

Месяц123456789101112
Тираж,тыс.100120121,7124,2128130,1133,45136141142,1143,8145
Доход,тыс. руб.128135138142147154159161163168170,5172

и заполнить ячейки за 12 месяцев условными данными. По этим данным нужно сделать линейный и экспоненциальный прогноз и др. (см. Задание).

  1. В целях привлечения покупателей и увеличения оборота фирма проводит стратегию ежемесячного снижения цен на свой товар. На основании данных о динамике изменения цен, объемов продаж в данной фирме и ещё в 3 конкурирующих фирмах за последние 12 месяцев сделать прогноз о том, возрастает ли объём продаж у данной фирмы при очередном снижении цен в следующем месяце, если предположить, что цены и объёмы у конкурентов в следующем месяце будут средние за рассматриваемый период.

Для выполнения задания нужно составить таблицу вида:

Мес.ФирмаКонкурент 1Конкурент 2Конкурент 3
1У-объёмх1-ценах2-объёмх3-ценах4-объёмх5-ценах6-объёмх7-цена
2100001875120001720125001740119701700
3110001850123401705126201735121001690
4115701810127501675127401710123501645
5118501750129101630129601695125001615
6121001685131001615130001674126301580
7123401630135701600132101625129201545
8127501615138201575133201610131501520
9129101600139801515134601560133001500
10131001575140001500136001525136101490
11132301530140701495137801500138501485
12134701510141201488139001460140001475
13
  1. На основании данных о курсе американского доллара и немецкой марки в первом полугодии сделать прогноз о соотношении данных валют на второе полугодие. Во что будет выгоднее вкладывать деньги в конце года?

Для выполнения задания нужно составить таблицу вида:

Месяц123456789101112
Доллар24,524,925,726,928,028,829,329,730,530,931,8
Марка72,176,379,685,389,790,993,296,4100,2101,6104,9

и сделать линейный прогноз на следующие 6 месяцев и др. (см. Задание).

  1. Известны данные за последние 6 месяцев о том, сколько раз выходила реклама фирмы, занимающейся недвижимостью, на телевидении – х1, радио – х2, в газетах и журналах – х3, а также количество звонков –у1 и количество совершённых сделок – у2. Какое соотношение количества совершённых сделок к количеству звонков у (в %) можно ожидать в следующем месяце, если известно, сколько раз выйдет реклама в каждом из перечисленных средств массовой информации.

Для выполнения задания нужно составить и заполнить таблицу вида:

ABCDE
1месяцх1х2х3y=у2/у1*100%
2115102478%
3216112380%
4318122281%
5419122284%
6521132185%
7622142089%
87

и выполнить применительно к таблице пункты Задания.

  1. Для некоторого региона известен среднегодовой доход населения, а также данные о структуре расходов (тыс. руб. в год) за последние 5 лет по следующим статьям: питание – х1, жильё – х2, одежда – х3, здоровье – х4, транспорт – х5, отдых – х6, образование – х7. На основании известных данных провести анализ потребительского кредита (или накопления) в следующем 6 году.

Для выполнения задания нужно составить и заполнить таблицу вида

Годых1х2х3х4х5х6х7Расход ДоходКредит(Y)
1521,310,35418,621,43,1
25,22,21,21,20,44,84,519,5222,5
35,52,51,11,40,64,64,920,623,42,8
45,82,70,91,614,25,621,825,84
5730,821,246,524,726,21,5
67,53,30,72,21,53,8726,527,5

В ячейках столбца ) должны быть записаны формулы, вычисляющие суммы всех расходов х12+…+х7 в каждом году, в ячейках столбца Доход – соответствующие среднегодовые доходы, в ячейках столбца Кредит – формулы разности содержимого ячеек с ежегодными доходами и затратами, т.е. Кредит = Доход- . Затем для столбца Кредит нужно выполнить регрессионный прогноз на следующий год и другие пункты Задания.

  1. Для 10 однокомнатных квартир, расположенных в одном районе, известны следующие данные: общая площадь – х1, жилая площадь – х2, площадь кухни – х3, наличие балкона – х4, телефона – х5, этаж – х6, а также стоимость – y . Определить, сколько может стоить однокомнатная квартира в этом районе без балкона, без телефона, расположенная на 1-ом этаже, общей площадью 28 м 2 , жилой – 16 м 2 , с кухней 6 м 2 .
КвартирыX1X2X3X4X5Стоимость ( y )
1413371242000
240307,72340000
3453780547000
446,33491649500
5503691451000
653409,51755000
75641100962000
860471221062300
965491421269000
10705814,521472000
112816601
  1. Определить возможный прирост населения (кол-во человек на 1000 населения) в 2011 году, если известны данные о кол-ве родившихся и умерших на 1000 населения в 1997-2006 годах.
Годы19971998199920002001200220032004200520062011
Родились100110130155170174180185190200
Умерли108115135160178180186190197205
  1. После некоторого спада наметился рост объёмов продаж матричных принтеров. Используя данные об объёмах продаж, ценах на матричные, струйные и лазерные принтеры, а также на их расходные материалы за последние 6 месяцев, определить возможный спрос на матричные принтеры в следующем месяце.

Проанализируйте, связано ли увеличение спроса на матричные принтеры с уменьшением спроса на струйные и лазерные.

Матричные принтерыСтруйные принтерыЛазерные принтеры
Спрос у1Цена х1Рас.мат. z1Спрос у2Цена х2Рас.мат. z/2Спрос у3Цена х3Рас.мат. z3
156417217426238455813125171558
258425017924239857011129841612
36042891822324015989132591789
46542971942024566498136871865
56943052051925127227140131998
67543182131825437686145872200
744562201726017795147892245

Необходимо сделать прогноз на седьмой месяц по уравнению у1=f(x1,z1), получить уравнение y=(у2,x2, z2, у3, x3, z2 ) и проанализировать его. Если слагаемые у2 и у3 входят в регрессионное уравнение со знаком «-«, то уменьшение спросов у2 и у3 ведёт к увеличению спроса у1.

  1. Построить прогноз развития спроса населения на телевизоры, если известна динамика продаж телевизоров (тыс. шт.) и динамика численности населения (тыс. чел.) за 10 лет. По данным таблицы сделать прогноз по обоим рядам на следующий год. Выполнить другие пункты задания.
Годы20012002200320042005200620072008200920102011
Динамика населения (тыс. чел)21,526,131,534,945,150,85659,463,967,1
Динамика продаж (тыс. шт.)2,52,93,43,94,14,855,65,96,2
  1. Размещая рекламу в 4-х изданиях, фирма собрала сведения о поступивших на нее откликов – у и сопоставила их с данными об изданиях: х1 – стоимость издания, х2 – стоимость одного блока рекламы, х3 – тираж, х4 – объём аудитории, х5 – периодичность, х6 – наличие телепрограммы. Какое количество откликов можно ожидать на рекламу в издании со следующими характеристиками: 15000 руб., 10$, 1000 экз., 25000 чел., 4 раза в месяц, без телепрограммы.

Пользуясь данными таблицы

Изданиях1х2х3х4х5х6Отклики, у
110000137001500041108
212500128502200081115
31589011,896028000100120
41785011120032000261128
5150001010002500040

необходимо сделать прогноз при заданных характеристиках.

  1. Размещая свою рекламу в 2-х печатных изданиях одновременно, фирма собрала сведения о количестве поступивших звонков и количестве заключенных сделок по объявлениям в каждом из указанных изданий за последние 12 месяцев. Определить, в каком из изданий и насколько эффективность размещения рекламы в следующем месяце будет больше?
МесяцыИздание 1Издание 2
ЗвонкиСделкиЗвонкиСделки
1986611279
21057214385
31057515090
411080130100
51259012075
614010011580
71369512882
81378713278
914510213888
101237514392
111307915097
121398815597
13

Эффективность определяется как сделки/звонки. Сделать линейный и экспоненциальный прогнозы по обоим изданиям.

  1. Пусть комплект мягкой мебели (диван + 2 кресла) характеризуется стоимостью комплектующих: х1— деревянные подлокотники, х2 – велюровое покрытие, х3 – кресло-кровать, х4 – угловой диван, х5 – раскладывающийся диван, х6 – место для хранения белья. По данным о стоимости 5 комплектов сделать вывод о возможной стоимости комплекта с обычным раскладывающимся диваном, с местом для белья, без деревянных подлокотников и велюрового покрытия, с креслом кроватью.

Пользуясь данными таблицы

Признаких1х2х3х4х5х6У -стоимость
Комплект 125054025004300640080013850 руб.
Комплект 232065030004800700098015770 руб.
Комплект 3400730390060008500110016730 руб.
Комплект 44521300430075009200205024350 руб.
Комплект 5550175064001245016700430042150 руб.
Комплект 66708002750670088001000

сделать прогноз и выполнить другие пункты задания.

  1. Для 2-х радиостанций известны данные об изменении объёма аудитории и динамике роста цен за 1 минуту эфирного времени за последние 12 месяцев. Определить, для какой радиостанции стоимость одного контакта со слушателем будет меньше?
МесяцРадиостанция 1Радиостанция 2
АудиторияЦена 1 мин.АудиторияЦена 1 мин.
125000080003000007560
254000065004500006340
358000064604900006250
465000063005500006000
573000060606100005730
675000060006900005300
780000054007500005100
884000053207800005000
989000051308700004700
1095000050009000004650
11100000048009400004600
121108000470010250004540
13
Контакт

В строке «Контакт» в ячейках С8 и D8 должны быть записаны формулы = С7/В7 и =Е7/D7 соответственно, вычисляющие стоимость 1 мин. Эфира для одного слушателя в прогнозируемом месяце. Прогноз нужно выполнить для линейного и экспоненциального приближений и выбрать более достоверный, а также сделать другие пункты Задания.

  1. На основании данных ежемесячных исследований известна динамика рейтинга банка (в условных единицах) за последние 6 месяцев в следующих сферах:
  2. менеджмент и технология – х1;
  3. менеджеры и персонал – х2;
  4. культура банковского обслуживания – х3;
  5. имидж банка на рынке финансовых услуг – х4;
  6. реклама банка – х5.

Определить возможное изменение количества вкладчиков данного банка в следующем месяце, если известны значения сфер рейтинга и количество вкладчиков в каждом из рассматриваемых 6 месяцев.


источники:

http://habr.com/ru/post/180409/

http://intuit.ru/studies/courses/3659/901/lecture/32718