Система уравнений для степенной модели

Уравнение нелинейной регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Виды нелинейной регрессии

ВидКласс нелинейных моделей
  1. Полиномальное уравнение регрессии:
    y = a + bx + cx 2 (см. метод выравнивания)
  2. Гиперболическое уравнение регрессии:
  3. Квадратичное уравнение регрессии:
Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам
  1. Показательное уравнение регрессии:
  2. Экспоненциальное уравнение регрессии:
  3. Степенное уравнение регрессии:
  4. Полулогарифмическое уравнение регрессии: y = a + b lg(x)
Нелинейные по оцениваемым параметрам

Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x)ПреобразованиеМетод линеаризации
y = b x aY = ln(y); X = ln(x)Логарифмирование
y = b e axY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx 2x1 = x; x2 = x 2Замена переменных
y = a + bx + cx 2 + dx 3x1 = x; x2 = x 2 ; x3 = x 3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных

Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:

  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
ГодФактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), yСреднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х
1995872515,9
200038132281,1
200150143062
200264003947,2
200377085170,4
200498486410,3
2005124558111,9
20061528410196
20071892812602,7
20082369514940,6
20092515116856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535

Системы уравнений высших степеней в математике с примерами решения и образцами выполнения

Системы двух уравнений первой и второй степени с двумя неизвестными:

Общий вид многочлена второй степени от двух переменных у и x, очевидно, следующий:

где а, b, с, d, е, f—данные числа. Общий вид системы уравнений с двумя неизвестными, состоящей из одного уравнения первой степени и одного уравнения второй степени, следующий:

Система такого вида легко решается способом подстановки. Именно, из второго уравнения можно выразить одно из неизвестных через другое и затем подставить в первое уравнение. В результате этого первое уравнение превратится в уравнение с одним неизвестным, вообще говоря, квадратное. Решив это уравнение, мы сможем определить затем и значения нового неизвестного.

При этом способе решения систем проверка полученных решений посредством подстановки в уравнение системы не обязательна и производится только для контроля правильности вычислений, ибо можно доказать, что при исключении одного неизвестного указанным способом лишних решений возникнуть не может.

Пример:

Решение:

Исключим из системы неизвестное у. С этой целью решим второе уравнение относительно у. Получим Затем подставим найденное выражение для у в первое уравнение. Получим

откуда после преобразований

и, следовательно, Соответствующие значения для у равны

Ответ. Система имеет два решения

Тот же прием исключения следует применять при решении систем трех уравнений с тремя неизвестными, если два уравнения имеют первую степень, третье квадратное. При этом из двух уравнений первой степени нужно выразить два неизвестных через третье неизвестное, и полученные выражения подставить в уравнение второй степени.

Таким же образом можно поступать при решении систем я уравнений с п неизвестными при любом я, если все уравнения, кроме одного квадратного, имеют первую степень.

Пример:

Решение:

Перепишем два последних уравнения системы в виде

Решая эту систему относительно х и у по обычным правилам, получим

Подставив эти выражения в первое уравнение, получим

Остается определить соответствующие значения для х и у, что делается подстановкой значений z₁, и z₂ в выражении х и у через z. Мы получим два решения системы:

Системы уравнений, решаемые особыми приемами

В гл. II, § 9 мы рассматривали системы уравнений вида

которые легко решаются при помощи формул Виета. Но, конечно, можно решать такие системы и способом исключения, описанным в предыдущем параграфе.

Часто встречающиеся системы уравнений вида

легко решаются методом исключения, но их можно решать и иначе. Именно, возведя в квадрат второе уравнение и вычитая из него первое, мы получим новое уравнение

которое является следствием данной системы. Объединив его с уравнением

мы получим систему, решаемую при помощи формул Виета.

Пример:

Решение:

Если х и у удовлетворяют уравнениям системы, то и следовательно, 2ху = — 8; ху = — 4. Таким образом, из данной системы следует система

для которой получаем два решения

Оба они удовлетворяют уравнениям исходной системы.

Еще проще решаются системы вида

Действительно, х² — y² = (x — у)(х + у), и потому если допустить, что х и у удовлетворяют обоим уравнениям системы, то (х—у) b = а, и следовательно, что вместе с уравнением х + у = b дает систему двух уравнений первой степени с двумя неизвестными, являющуюся следствием исходной системы, которую легко решить. Таким же образом решается и система вида

Пример:

Решение:

Если х и у удовлетворяют уравнениям системы, то

и следовательно, х + у =b. Решая систему

получим х = 4; v = 1.

Ответ. х = 4; v = 1.

Наконец отметим системы вида

Такие системы уравнений можно решить способом исключения, именно, в силу второго уравнения что при подстановке в первое уравнение дает уравнение относительно х, легко сводящееся к биквадратному.

Однако здесь следует рекомендовать другой прием. Именно, если к первому уравнению добавить, а затем вычесть удвоенное второе, то мы получим новую систему

являющуюся следствием исходной.

Но новая система легко решается, ибо из нее следует, что

и система распадается на 4 системы уравнений первой степени

Следует отметить, что сопоставление результатов решения рассмотренной системы по способу исключения и при помощи указанного искусственного приема приводит к тем же соотношениям, которые были получены из сопоставления двух способов решения биквадратного уравнения.

Системы двух уравнений второй степени, не содержащие линейных членов

Решение системы двух уравнений второй степени с двумя неизвестными общего вида

представляет значительные трудности. Именно, можно доказать, что решение такой системы зачастую сводится к решению уравнения четвертой степени, а нахождение решения общего уравнения четвертой степени представляет довольно сложную задачу, не входящую в рамки курса элементарной алгебры.

Для некоторых систем частного вида возможно элементарное решение. Важным примером таких систем являются системы двух квадратных уравнений, каждое из которых не содержит членов первой степени относительно неизвестных, т. е. системы вида

В этом случае система решается посредством уничтожения свободных членов. Это делается так. Первое уравнение умножается на f₁ второе на f и полученные уравнения вычитаются. Составленное так новое уравнение является следствием исходной системы и имеет вид Ах²+Вху+Су² =0, из которого следует, что

(если только у ≠ 0), откуда мы можем определить отношение

Найдя это отношение, мы можем выразить х через у и затем подставить в одно из уравнений исходной системы. Получившееся в результате неполное квадратное уравнение относительно у легко решается.

Нетрудно видеть, что если А ≠ 0 и хотя бы один из свободных членов в исходных уравнениях отличен от 0, то сделанное выше предположение у ≠ 0 не нарушает общности.

Действительно, если в уравнении Ах² + Вху + Су² == 0 при А ≠ 0 положим у = 0, то и х = 0. Но x = 0; y = 0 не может быть решением исходной системы, если хотя бы один из ее свободных членов отличен от нуля.

Если же коэффициент А = 0, то решение вспомогательного уравнения Вху + Су² = 0 только упрощается, для решения достаточно вынести за скобку у и приравнять к нулю каждый множитель.

Пример:

Решение:

Умножив первое уравнение на 7 и второе на 3, получим после вычитания

Таким образом, х = 22у или х = 2у. Дальнейшее очевидно. Доведя решение до конца, получим четыре решения системы

Решение систем уравнений высших степеней

Задача о решении системы уравнений высших степеней с несколькими неизвестными в общем случае является очень трудной, часто не допускающей решения средствами элементарной алгебры. Однако во многих случаях, комбинируя известные методы решения уравнений и систем уравнений — метод сложения и вычитания, исключения неизвестного с помощью подстановки, введения нового неизвестного— удается найти путь к решению системы. Но в каждой отдельной задаче приходится использовать ее частные особенности для того, чтобы найти удачный метод решения. Рассмотрим несколько примеров.

Пример:

Решить систему уравнений.

Решение:

Способ 1. Из второго уравнения находим, что у = 3 — х. Подставив в первое уравнение, получаем

и, после упрощений,

Соответствующие значения для у будут такими:

Система имеет два решения.

Способ 2. Представим х³ + y³ = 18 как

Принимая во внимание второе уравнение, получим 27 — 9xy = 18, откуда ху = 1. Система

есть следствие исходной, но и исходная есть следствие преобразованной, ибо если х + у = 3; ху = 1, то

Решая преобразованную систему при помощи формул Виета, получим те же два решения:

Пример:

Решение:

Исключение одной из неизвестных величин приводит к решению уравнения четвертой степени, в котором все коэффициенты отличны от нуля. Поэтому лучше избежать этого пути. Это легко сделать, введя новую неизвестную z = xy. Тогда

Таким образом, для z получаем уравнение

откуда z₁ = 47; z₂ = 3.

Итак, данная система расщепилась на две системы:

первая из которых не имеет действительных решений, а вторая имеет следующие решения:

Указанный прием удобно применять к системам двух уравнений с двумя неизвестными, в случае если каждое из уравнений симметрично относительно х и у, т. е. если уравнения не изменяются при перемене х и у местами.

Пример:

Решить систему уравнений:

Решение:

Перемножив уравнения системы, получим

откуда xyz = ±30. Но так как ху = 5, то отсюда следует, что =5z±30 и z = ±6. Теперь х и у легко определить из второго и третьего уравнений системы. Мы приходим к двум решениям:

Пример:

Решить систему уравнений

Решение:

Возвысив обе части первого уравнения в квадрат, получим

Вычитая из этого уравнения второе уравнение данной системы, получим 2x³y³ = 686, откуда (xy)³ = 343; ху = 7. Теперь из первого уравнения данной системы находим, что Итак, решение данной системы свелось к решению системы

Пример:

Решить систему уравнений

Решение:

В первом уравнении раскроем скобки в каждом множителе. Затем поделим обе части обоих уравнений на ху. Получим

Теперь введем новые неизвестные В новых неизвестных преобразованная система имеет такой вид:

Эта система легко решается. Получаем:

Далее находим значения для х и у из уравнений

Всего получим восемь решений:

Многообразие приемов, которые могут применяться при решении систем уравнений высших степеней, неисчерпаемо, и тем не менее найти путь к решению данной системы удается далеко не всегда. Важно проявлять изобретательность при решении системы в тех случаях, когда это возможно.

Графическое решение уравнений с одним неизвестным

Как уже было сказано, алгебраические методы решения систем уравнений далеко не всегда применимы. Но для целей практики бывает важно находить решения систем уравнений хотя бы приближенно. Эта цель хорошо достигается применением графических методов. Сначала рассмотрим применение графиков к приближенному решению одного уравнения с одним неизвестным.

Пусть дано уравнение х²- 4x+1 = 0. Для того чтобы графически решить такое уравнение, рассматриваем неизвестное х как независимое переменное, а левую часть уравнения как функцию этой переменной, т. е. введем в рассмотрение функцию y = x²-4x+1

Решить предложенное уравнение — значит узнать, при каких значениях независимой переменной х функция у обращается в нуль.

Точки графика, соответствующие таким значениям независимой переменной, лежат на оси абсцисс, ибо ордината каждой такой точки равна нулю. Следовательно, интересующие нас точки графика являются точками пересечения графика с осью абсцисс, а корни уравнения x²-4x+1=0 являются абсциссами этих точек пересечения. При этом абсцисса каждой точки пересечения графика с осью абсцисс является корнем уравнения x²-4x+1=0

Строим график функции y = x²-4x+1 Он имеет вид параболы с вершиной в точке (2,-3) (рис. 68). По чертежу находим, что В действительности

Совершенно такие же рассуждения можно применить к любому уравнению .у —0, где у есть алгебраическое выражение от неизвестной х. Именно, для графического решения такого уравнения нужно построить график выражения у, рассматриваемого как функция от переменной х, и найти точки пересечения этого графика с осью абсцисс. Абсциссы точек пересечения будут корнями уравнения. Конечно, при графическом решении уравнений корни получаются приближенно и довольно грубо, так как на чертеже произвести измерение абсцисс с высокой степенью точности невозможно.

Пример:

Решение:

Строим график функции у = x³ — 4x + 1, вычислив предварительно таблицу значений:

По результатам этих вычислений мы видим, что при изменении х от —3 до —2 функция переходит от отрицательных значений к положительным, на участке от 0 до 1 переходит от положительных значений к отрицательным и на участке от 1 до 2 снова от отри-
нательных значений к положительным. На этих участках и следует ожидать, что график пересечет ось абсцисс.

Проводим вычисления для некоторых промежуточных значений х, взятых на этих участках с целью уточнения хода функции:

Теперь построим график по всем вычисленным точкам, соединив их плавной линией (рис. 69).

Из этого чертежа мы получаем:

Для того чтобы уточнить значения корней, следует построить в бoльшем масштабе участки графика, примыкающие к корням, вычислив дополнительно значения функции на этих участках. Например, для уточнения корня х₃ проведем следующее вычисление:

Изобразим эти точки на чертеже, приняв большую единицу масштаба (рис. 70).

На таком малом участке изменения х мы вправе считать, что график очень близок к прямой линии. Исходя из этого предположения, получим

Графическое решение систем двух уравнений с двумя неизвестными

Пусть дана система уравнений с двумя неизвестными х и у. Каждое из этих уравнений, взятое отдельно, определяет зависимость между величинами х и у.

Построим на одном чертеже графики этих зависимостей. Числа (x₀y₀), образующие решение системы, должны удовлетворять обоим уравнениям системы, а следовательно, точка с координатами (х₀ у₀) должна лежать на графиках обеих зависимостей, т. е. должна являться точкой пересечения этих графиков.

Обратно, координаты (x₀у₀) любой точки пересечения построенных графиков удовлетворяют обоим уравнениям системы, т. е. образуют решение системы.

Таким образом, для того чтобы графически решить систему двух уравнений с двумя неизвестными, нужно построить график для каждого из уравнений и найти точки пересечения этих графиков. Координаты каждой точки пересечения образуют решение системы.

Пример:

Решить графически систему уравнений

Решение:

Алгебраическое решение этой системы затруднительно. Хотя неизвестное у и легко исключается посредством подстановки в первое уравнение его выражения через дг из второго уравнения, но в результате такого исключения получается уравнение четвертой степени относительно х, решение которого выходит за рамки элементарного курса алгебры.

Обратимся к построению графиков. Графиком зависимости х² + у² = 9 является, как мы видели (гл. III, § 3, третий пример), окружность с центром в начале координат и радиусом, равным 3. Графиком зависимости у= 2х² — 2х — 3 является парабола, которую легко построить по таблице значений (рис. 71). Графики пересекаются в четырех точках, координаты которых суть приближенно (—1,2; 2,7); (0; —3); (1,1; —2,8) и (2,2: 2,0).

Следовательно, данная система имеет четыре решения

Второе решение оказывается точным. Остальные три — приближенные.

Графическое решение системы двух уравнений с двумя неизвестными почти не сложнее графического решения одного уравнения с одним неизвестным, а иногда даже проще.

Поэтому часто бывает полезно преобразовать посредством введения нового неизвестного одно уравнение с одним неизвестным в систему двух уравнений с двумя неизвестными, а затем решать эту систему графически. При таком преобразовании следует заботиться о том, чтобы построение графиков обоих уравнений полученной системы было как можно проще.

Рассмотрим несколько примеров на применение этого приема.

Пример:

Решить графически уравнение

Решение:

Представим предложенное уравнение в виде x²=x+1. Мы видим, что в левой и правой частях уравнения находятся некоторые функции от х. Решить уравнение — значит найти, при каких значениях независимого параметра обе функции принимают равные значения. Графически это означает, что нужно найти абсциссы точек пересечения графиков функций у = х² и у =х 1.

Действительно, если при х = а а² = а + 1, то это значит, что точка (а, а²) совпадает с точкой (a, a+1) и, следовательно, принадлежит как графику функции у = х², так и графику функции у = х + 1.

Очевидно и обратное. Если графики функций у = х² и у = x + 1 пересекаются в точке (а, b), то b = a² = a + 1 и, следовательно, при х = а обе функции принимают равные значения. Все сказанное можно коротко изложить так.

Вводим новую неизвестную y = х². Тогда данное уравнение переходит в уравнение у — х—1= 0, которое вместе с введенной зависимостью дает систему

Графиком зависимости у = х² является .парабола, графиком зависимости у = х + 1— прямая линия (рис. 72). Решение задачи дают абсциссы точек пересечения. Они равны приближенно:

Любое приведенное квадратное уравнение х² + рх + q = 0 может быть решено тем же образом, посредством преобразования в систему

Это удобно тем, что графиком первой зависимости является одна и та же парабола, а графиком второй зависимости является прямая линия, которую очень легко построить в каждом частном случае по двум точкам. Поэтому, тщательно построив в большом масштабе параболу у=х3, мы получаем возможность быстро решать любое приведенное квадратное уравнение.

Подобным образом для решения кубического уравнения, имеющего вид х³ + рх + q = 0, достаточно заготовить график функции у = х³. Абсциссы точек пересечения этого графика с прямой у + рх + q = 0 дают корни уравнения x³ + + q = 0.

Пример:

Превратив в систему, решить графически уравнение

Решение:

Это делают приемом, указанным выше. Однако это можно сделать и иначе. Именно, перепишем уравнение в виде х(х² — 4)+1=0

и положим х² — 4 = у. Уравнение заменится системой

Графиком первого уравнения системы является парабола, графиком второго — гипербола (рис. 73). Абсциссы точек пересечения суть

Этим приемом можно решить любое кубическое уравнение

Графиком первого уравнения является парабола, графиком второго — гипербола.

Решение уравнения четвертой степени ах⁴ + bх² + сх + d = 0 при с ≠ 0 легко сводится к определению точки пересечения двух парабол.

Для этого вводим новое неизвестное у = х² У и уравнение заменяем системой

Графиком первого уравнения является парабола с вершиной в начале координат и осью, совпадающей с осью ординат. Графиком второго уравнения тоже является парабола, но только ее ось параллельна оси абсцисс. Действительно, решив второе уравнение относительно х, мы получим

т. с. х является квадратичной функцией от у, графиком которой является парабола с осью, параллельной оси абсцисс.

Из рассмотренных примеров ясно, что каждое данное уравнение с одним неизвестным можно преобразовать а систему двух уравнений с двумя неизвестными многими способами и при выборе какого-нибудь способа следует заботиться о наиболее выгодном расположении графиков на чертеже.

Уточнение корня уравнения или решения системы нелинейных уравнений, исходя из грубого приближения

При графическом решении корень уравнения или решение системы уравнение определяется лишь грубо приближенно. Уточнение результата за счет увеличения масштаба не очень эффективно, так как повышение точности требует пропорционального увеличения масштаба. Например, чтобы определить новую значащую цифру после занятой в десятичном разложении корня, т. е. увеличить точность в 10 раз, нужно и масштаб увеличить в 10 раз.

Однако существует весьма хорошо действующий алгебраический способ для подобного рода уточнения. Мы не будем излагать его в общем виде, а ограничимся только рассмотрением примеров его применения.

Пример:

Для уравнения x³ — 4x + 1= 0 известно приближенное значение одного из корней х ≈1,8. Требуется вычислить этот корень с большей точностью.

Решение:

Поступаем так. Положим x =1,8 + h, где h — новая неизвестная. Мы можем быть уверены, что h есть маленькое число, во всяком случае меньшее, чем 0,1. Подставив в уравнение вместо х его выражение через h, получим

Так как h² меньше h во столько же раз, во сколько h меньше единицы, для приближенного вычисления h отбросим в полученном уравнении члены с h² и h³. Получим

Для дальнейшего уточнения мы можем еще раз применить тот лее прием. Положим x≈1,86 + h₁,. Для h₁ получим, отбрасывая члены, содержащие h₁² и h₁³, приближенное уравнение

(При этом нет надобности вычислять коэффициенты при h₁² и h₁³ , ибо соответствующие члены мы все равно отбрасываем.) Отсюда h≈ 0,0008 и, следовательно,x ≈ 1,8608.

Продолжая этот прием, мы можем получить значение корня уравнения с любой степенью точности.

В общем виде идея метода такова. Если х₀ есть приближенное значение корня данного уравнения, мы полагаем в уравнении x= x₀ + h и в полученном уравнении относительно h отбрасываем члены, содержащие h выше, чем в первой степени, и решаем приближенно получившееся уравнение первой степени относительно h. Тогда число x₁ = x₀ + h оказывается, вообще говоря, значительно лучшим приближением к корню, чем исходное приближение х₀. В случае надобности процесс можно повторить.

Пример:

Для одного решения системы уравнений

известны приближенные значения х ≈ 2,2, у ≈ 2,0. Найти решение с большей точностью.

Решение:

Будем действовать тем же способом, как при уточнении корня одного уравнения с одним неизвестным. Именно, положим x = 2,2 + h; .у = 2,0 + к и, подставив в уравнение, отбросим все члены, содержащие h², k², hk, так как эти величины значительно меньше самих h и k. Получим

Решив эту систему, получим h ≈ — 0,03, k ≈ 0,07. Таким образом, уточненными значениями для х и у являются значения

Для дальнейшего уточнения можно повторить тот же процесс.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Экспоненциальная и степенная однофакторная регрессии.

Экспоненциальная модель линеаризуется аналогично (4.1):

Переходя к новым переменным получаем линейную регрессионную модель:

Экспоненциальнаяоднофакторная регрессия имеет вид

степенная однофакторная регрессия имеет вид

Для нахождения коэффициентов а и b предварительно проводят процедуру линеаризации выражений (4.8) и (4.9):

а затем уже строят линейную регрессию между lnŷ и х для экспоненциальной регрессии, и между lnŷ и lnх для степенной регрессии.

Наибольшее распространение степенной функции в эконометрике связано с тем, что параметра имеет четкое экономическое истолкование, – он является коэффициентом эластичности. Это значит, что коэффициент b показывает, на сколько % в среднем изменится результат, если фактор изменится на 1%.

Формирование нелинейных однофакторных регрессионных моделей на компьютере с помощью ППП Excel

Для вычисления параметров экспоненциальной регрессии (4.8) на компьютере (в Excel) используется встроенная статистическая функция ЛГРФПРИБЛ. Порядок вычисления аналогичен применению функции ЛИНЕЙН.

Для вычисления параметров степенной регрессии после преобразования исходных данных в соответствие с (4.11), можно воспользоваться функцией ЛИНЕЙН.

Для получения графиков однофакторных регрессий можно применить Мастер диаграмм, строя предварительно точечный график исходных данных (диаграмму рассеяния), а затем использовать режимДобавить линию тренда(дляэтого установите курсор на любую точку точечной диаграммы и щелкните правой кнопкой мышки), причем в этом режиме Excelпредоставляет возможность выбора шести функций – линейной, логарифмической, полиномиальной, степенной, экспоненциальной и скользящей средней. После выбора функции в режиме Параметры задайте флажокПоказывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации(R^2).

4.6. Практический блок

Пример

Задача 1. По некоторым территориям районов края известны значения среднего суточного душевого дохода в у.е. (фактор X) и процент от общего дохода, расходуемого на покупку продовольственных товаров (фактор Y) (табл. 4.1).

Требуется для характеристики зависимости У от X рассчитать параметры линейной, степенной, показательной функции и выбрать оптимальную модель (провести оценку моделей через среднюю ошибку аппроксимации (А) и F-критерий Фишера.

Районух
Пожарский (1)68,845,161,2777,523111,498956,5970
Кавалеровский (2)61,259,056,46894,73112,0081722,3833
Дальнегорский (3)59,957,257,09152,80850,631237,88767
Хасанский (4)56,761,855,50041,19965,691091,43904
Лесозаводский (5)55,058,856,53811,53811,816832,36575
Хорольский (6)54,347,260,55056,25057,0995639,0687
Анучинский (7)49,355,257,78338,48330,0105571,9664
итого405,232,53428,7563201,708
среднее57,8864,6477

1а. Для расчета параметров а и b линейной регрессии у=аx+ b решаем систему нормальных уравнений относительно а и b (или используем EXCEL).

Получаем уравнение регрессии: у = 76,88 – 0,35x.

С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.

Рассчитаем линейный коэффициент парной корреляции: r= -0,35326.

Связь умеренная, обратная.

Определим коэффициент детерминации:

Вариация результата на 12,5% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения (см.табл. 4.1).

Найдем величину средней ошибки аппроксимации А:

В среднем расчетные значения отклоняются от фактических на 8,03%.

Fтабл = 6,6 >Fфакт, при γ = 0,05.

Полученное значение указывает на необходимость принять гипотезу Н0 о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.

1б. Построению степенной модели у=bx а предшествует процедура линеаризации переменных. Линеаризация производится путем логарифмирования обеих частей уравнения:

Для расчетов используем формулы для линейной регрессии(или используем EXCEL).

Получим уравнение: у = 190,03х -0,2984 . R 2 =0,1157.

Характеристики степенной модели указывают, что она несколько хуже линейной функции описывает взаимосвязь.

1в. Построению уравнения показательной кривой у=bа х предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

lgy = lgb + хlgа , или Y = С + хlgа, и опять же можно использовать формулы для линейной регрессии(или EXCEL).

Получим уравнение: у = 77,24е -0,0053х . R 2 =0,1026.

Показательная функция еще хуже, чем степенная, описывает изучаемую зависимость.

1г. Уравнение равносторонней гиперболы у=а/x+ b линеаризуется при замене: x = 1/z .

Тогда у=аz+b. Для расчетов используем формулы для линейной регрессии(или используем EXCEL).

Получено уравнение: у = 38,435 + 1054.7/x. R 2 =0.1539.

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи (по сравнению с линейной, степенной и показательной регрессиями). A остается на допустимом уровне: 8,1%.

Следовательно, принимается гипотеза Н0 о статистически незначимых параметрах этого уравнения. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.

Контрольные вопросы

1. Какие методы применяются для выбора вида модели регрессии?

2. Какие функции чаще всего используются для построения уравнения парной регрессии?

3. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае гиперболической, показательной регрессии?

4. В каких случаях осуществляется построение нелинейных спецификаций уравнения регрессии с последующей их линеаризацией?

5. Приведите примеры нелинейных моделей регрессии и их линеаризацию.

6. Какие проблемы спецификации ошибок возникают при линеаризации уравнения регрессии?

Задания и задачи

1.Определите вид и параметры тренда в динамическом ряде: – реальный обменный курс, х – время.

годyх
2,5
2,3
1,7
3,5
3,3
2,8
2,4
2,2
2,1

2.Определите вид и параметры тренда в динамическом ряде выплавки стали.

Год 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Выплавка 65,3 70,8 76,3 80,2 85,0 91,0 96,9 102,2 106,5 110,3 115,9

3. Известен объем предложения акций на фондовом рынке в зависимости от цены. Определить лучшую регрессионную модель.

x, цена, $
y, объем, тыс.шт.

Тесты

1. Как интерпретируется в линейной модели коэффициент регрессии?

a) коэффициент эластичности,

б) коэффициент относительного роста,

в) коэффициент абсолютного роста.

2. Как в показательной модели интерпретируется коэффициент регрессии?

a) коэффициент эластичности,

б) коэффициент относительного роста,

в) коэффициент абсолютного роста.

3. Как в степенной модели интерпретируется коэффициент регрессии?

a) коэффициент эластичности,

б) коэффициент относительного роста,

в) коэффициент абсолютного роста.

4. Применим ли метод наименьших квадратов для расчёта параметров нелинейных моделей?

в) применим после её специального приведения к линейному виду.

5.Применим ли метод наименьших квадратов для расчёта параметров показательной зависимости?

в) применим после её приведения к линейному виду путём логарифмирования.

6.Применим ли метод наименьших квадратов для расчёта параметров степенной зависимости?

в) применим после её приведения к линейному виду путём логарифмирования.

7.Что показывает коэффициент абсолютного роста?

a) на сколько единиц изменится y, если x изменился на единицу,

б) на сколько процентов изменится y, если x изменился на один процент,

в) относительную величину изменения y при изменении x на единицу.

8. Что показывает коэффициент регрессии показательной модели?

a) на сколько единиц изменится y, если x изменился на единицу,

б) на сколько процентов изменится y, если x изменился на один процент,

в) относительную величину изменения y при изменении x на единицу.

9. Что показывает коэффициент регрессии степенной модели?

a) на сколько единиц изменится y, если x изменился на единицу,

б) на сколько процентов изменится y, если x изменился на один процент,

в) относительную величину изменения y при изменении x на единицу.

10. Какую модель следует выбрать, если есть основания считать, что в изучаемом периоде коэффициент абсолютного роста не изменяется?

11. Какую модель следует выбрать, если есть основания считать, что в изучаемом периоде коэффициент относительного роста не изменяется?

12.Какую модель следует выбрать, если есть основания считать, что в изучаемом периоде коэффициент эластичности не изменяется?

13. При анализе издержек Y от объемов выпуска X целесообразно использовать следующую модель:

14. Параметры α и β в производственной функции Кобба – Дугласа называют:

а) коэффициентами эластичности;

б) коэффициентами корреляции;

в) коэффициентами автокорреляции.

15. В модели lnY = β0 + βX+ ε коэффициент β имеет смысл:

а) абсолютного прироста;

в) темпа прироста.

4.7. Самостоятельная работа студентов

Литература для самостоятельной работы

1. Гладилин, А. В. Эконометрика: Учеб. пособие для вузов / А. В. Гладилин, А. Н. Герасимов, Е. И. Громов. -М.: КноРус , 2006. -226с.

2. Салманов, О. Н. Эконометрика: учеб. пособие для вузов / О. Н. Салманов -М.: Экономистъ , 2006. -317с.

3. Эконометрика: учебник / К. В. Балдин, В. Н. Башлыков, Н. А. Брызгалов и др.; под ред. В. Б. Уткина. -М.: Дашков и К, 2008. -304 с.

5. Оценка качества эконометрических регрессионных моделей и прогнозирование на их основе.

5.1. Доверительные интервалы для коэффициентов: реальные статистические данные 62

5.2. Проверка статистических гипотез о значениях коэффициентов 68

5.3. Проверка значимости параметров линейной регрессии и подбор

модели с использованием f-критериев 74

5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии 81

5.5. Линейные регрессионные модели с гетероскедастичными и

автокоррелированными остатками 88

5.6. Обобщенный метод наименьших квадратов. Метод Главных

5.7. Прогнозирование. Доверительный интервал прогноза 96

5.8. ПРАКТИЧЕСКИЙ БЛОК 97

5.9. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ 111


источники:

http://lfirmal.com/sistemy-uravneniy-vysshih-stepeney/

http://poisk-ru.ru/s50480t1.html