Система уравнений графическим способом огэ

Открытый урок по алгебре в 9 классе «Графический способ решения систем уравнений»
методическая разработка по алгебре (9 класс) на тему

«Графический способ решения систем уравнений»

Скачать:

ВложениеРазмер
konspekt_otkrytogo_uroka_v_9_klasse.docx27.26 КБ
graficheskiy_sposob_resheniya_sistem_uravneniy_na_otkrytyy_urok.pptx808.77 КБ

Предварительный просмотр:

«Графический способ решения систем уравнений»

Тип урока: Урок изучения нового материала

Образовательные: обобщить графический способ решения систем уравнений первой степени на системы уравнений с двумя переменными второй степени, закрепить навыки построения графиков функций; научить анализировать данные для нахождения решения системы уравнений по графику, формировать потребность приобретения новых знаний

Развивающие : Р азвитие творческой деятельности и познавательного интереса учащихся, развитие критического мышления; культуры графического построения

Воспитательные : воспитывать уважение друг к другу, взаимопонимание, уверенность в себе , работоспособность.

Оборудование: Компьютер, проектор, компьютерная презентация.

3. Актуализация знаний.

4.Конструирование новых знаний

6. Первичное осмысление и применение изученного способа решения систем уравнений.

7. Подведение итогов. (Рефлексия).

8. Выставление оценок. Д/З

Здравствуйте, ребята! Садитесь.

Мы урок наш начинаем,

Всем удачи пожелаем.

Вы друг друга поддержите

Постарайтесь, не ленитесь.

И на 5 лишь все трудитесь.

2. Мотивация урока.

Математика много дает для умственного развития человека – заставляет думать, соображать, искать простые и красивые решения, помогает развивать логическое мышление, умение правильно и последовательно рассуждать, тренирует память, внимание, закаляет характер. Надеюсь, что сегодня вы все будете работать с большим желанием узнать, что-то новое и в тоже время закрепить свои прошлые знания. Ведь как гласит народная мудрость: «Была бы охота – заладится всякая работа».

Сегодня на уроке мы рассмотрим один из способов решения систем уравнений, разработаем алгоритм решения.

При этом вы должны быть внимательными, аккуратными, логически мыслить, анализировать, делать выводы.

Николай Егорович Жуковский сказал: «В математике есть своя красота, как в живописи и поэзии».

Сегодня на уроке мы с вами в этом постараемся убедиться.

Разминка для ума.

Графики уравнений с 2 переменными весьма разнообразны. (Слайд 5)

Вы знаете, что иллюстрацией уравнений служат их графики на координатной плоскости. Установите соответствие (Слайд 7)

4. Конструирование новых знаний.

В 7 классе мы рассматривали системы уравнений первой степени с двумя переменными. Теперь займемся решением систем, составленных из двух уравнений второй степени или из одного уравнения первой степени, а другого второй степени.

Чтобы хорошо с этим разобраться, вспомним, как мы решали системы линейных уравнений.

1.Что называется решением системы уравнений?

( Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство)

2.Решить систему уравнений — это значит найти все её решения или установить, что их нет.

Запишем тему урока

Дети в тетрадях пишут дату, тему урока «Графический способ решения систем уравнений»,

Проговорить цель урока. Слайд№4

Задание

слайд № 11 .(учащиеся еще раз его проговаривают)

1.Выразить у через х в каждом уравнении.

2.Построить в одной системе координат график каждого уравнения.

3.Определить координаты точки пересечения графиков.

4.Записать ответ: х=…; у=… , или (х; у)

Но, к сожалению, графический способ не всегда обеспечивает высокую точность результата, не всегда решения являются точными. В основном этот метод применяется для:

* нахождения приближенных решений;

* с помощью этого метода легко выяснить, сколько решений может иметь система уравнений

5. Физкультминутка. Ученики встают с места, учитель называет формулы различных функций, ученики в воздухе руками рисуют соответствующие им графики у=х 2 , у=2х+5,у=3\х, у=-х 2 ,у=х 3, .у=-5\х.

6.Закрепление изученного материала.

Минутка ОГЭ : — решить систему уравнений графическим способом самостоятельно (из сборника заданий для подготовки к ГИА )

7.Итог урока — рефлексия. слайд№15

Сегодня на уроке

На уроке было легко…

На уроке было трудно…

Мне нужно еще поработать над…

8.Задание на дом:

Комментируются и выставляются оценки за урок ученикам, работавшим у доски, а также наиболее отличившимся на уроке.

— Наш урок подошел к концу. Благодарю всех за работу и желаю успехов при выполнении домашнего задания. Урок окончен. До свидания.

Предварительный просмотр:

Подписи к слайдам:

Муниципальное бюджетное общеобразовательное учреждение «Редкодубская средняя общеобразовательная школа» Ардатовского района Республики Мордовия Учитель математики Козырева Людмила Анатольевна Урок для учащихся 9 класса по теме «Графический способ решения систем уравнений» Учебник Ю.Н. Макарычев под редакцией С.А. Теляковского

Николай Егорович Жуковский сказал: «В математике есть своя красота, как в живописи и поэзии». ( 5 [17] января 1847 , с. Орехово (ныне Владимирской области) — 17 марта 1921 , Москва ) — русский механик , создатель аэродинамики и аэромеханики как наук.

Графический способ решения систем уравнений

Цель урока: Формирование умений и навыков решения систем уравнений графическим способом

y x 0 0 y x b y x 0 y x 0 y x 0 прямая гипербола парабола окружность кубическая парабола Разминка для ума

0 х у Вы, конечно, помните, что графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции. у = f( х) Вы уже знакомы с некоторыми важными видами функций

Установите соответствие окружность гипербола прямая парабола Проверить кубическая парабола

Решить систему значит найти все её решения или доказать, что их нет. Решение системы пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство.

Является ли решением системы пара чисел ?

0 х у 1 1 Задание 1 Решаем систему: Преобразуем уравнения системы: Строим в одной системе координат графики уравнений системы А теперь самостоятельно определите решения системы.

Давайте сделаем из рассмотренного примера выводы. Помните о двух вещах! Если точек пересечения графиков нет, то система решений не имеет; Координаты точек пересечения определяются приблизительно, поэтому и решения могут получиться приблизительными; Чтобы проверить точность полученных решений, их нужно подставить в уравнения системы! Чтобы решить систему двух уравнений с двумя неизвестными, нужно : Построить в одной системе координат графики уравнений, входящих в систему; Определить координаты всех точек пересечений графиков (если они есть); Координаты этих точек и будут решениями системы.

0 х у 1 1 Задание 2 Решаем систему: Преобразуем уравнения системы: Строим в одной системе координат графики уравнений системы А теперь самостоятельно определите решения системы.

№421, стр.111 учебника Минутка ОГЭ : — решить систему уравнений графическим способом самостоятельно (из сборника заданий для подготовки к ГИА )

«Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию» Я. А. Каменский.

Сегодня на уроке Я учился (лась)… Я смог (ла)… На уроке было легко… На уроке было трудно… Мне нужно еще поработать над…

Домашнее задание Уровень А № 419; Уровень В № 526 ;

По теме: методические разработки, презентации и конспекты

Интегрированный урок алгебры и информатики в 9-м классе по теме: «Графический способ решения систем уравнений»

Тип урока. Урок обобщения и систематизации знаний по темам: Графический способ решения систем уравнений в системе ЭТ (Microsoft Excel). Оборудование и материалы: 12 ПК (установлена операцио.

Урок. 9 класс. Графический способ решения систем уравнений

Урок с презентацией по теме: «Графический способ решения систем уравнений». 9 класс.

Урок по алгебре в 9 классе «Графический способ решения систем уравнений»

На уроке повторяются графики различных уравнений и рассматривается графический метод решения систем уравнений с двумя переменными.

открытый урок по алгебре 7 класс «Алгебраический способ решения задач»

Первый урок по теме «Алгебраический способ решения задач» к учебнику Дорофеева Г. В.

открытый урок по алгебре 8 класс на тему «Решение систем неравенств с одной переменной»

открытый урок по алгебре 8 класс на тему «Решение систем неравенств с одной переменной» Урок полностью соответствует ФГОС+ презентация к уроку.

Технологическая карта урока алгебры в 9 классе по теме: «Решение систем уравнений второй степени с двумя переменными. Графический способ решения систем уравнений»

1. Разработка технологической карты урока алгебры в 9 классе по теме: «Решение систем уравнений второй степени с двумя переменными. Графический способ решения систем уравнений.2. Технологическая .

Урок в 9 классе «Графический способ решения систем уравнений»

Урок в 9 классе «Графический способ решения систем уравнений&quot.

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Графический способ решения систем уравнений. 9-й класс

Разделы: Математика

Класс: 9

Тип урока: урок изучения нового материала.

Цели урока:

  • открыть совместно с учащимися новый способ решения систем уравнений;
  • вывести алгоритм решения систем уравнений графическим способом;
  • уметь определять сколько решений имеет система уравнений;
  • учить находить решения системы уравнений графическим способом;
  • повторить построение графиков элементарных функций;
  • создать условия для контроля (самоконтроля) учащихся:
  • воспитание ответственного отношения к труду,
  • аккуратности ведения записей.

Ход урока.

I. Организационный момент.

II. Повторение. Подготовка к изучению нового материала. (Приложение 1)

  1. Что такое функция? (слайд 3-11)
  2. Что называется графиком функции?
  3. Какие виды функций вы знаете?
  4. Какой формулой задается линейная функция? Что является графиком линейной функции?
  5. Какой формулой задается прямая пропорциональность? Что является ее графиком?
  6. Какой формулой задается обратная пропорциональность? Что является ее графиком?
  7. Какой формулой задается квадратичная функция? Что является ее графиком?
  8. Каким уравнением задается уравнение окружности?
  9. Что называют уравнением с двумя переменными; (слайд 12)
  10. Выразите переменную у через переменную х:
    а) у – х² = 0
    б) х + у +2 = 0
    в) 2ху + 3 = 0
    г) ху = -12
  11. Является ли пара чисел (1; 0) решением уравнения
    а) х² +у = 1;
    б) ху +3 = х;
    в) у(х +2) = 0.
  12. Что является решением системы уравнений с двумя переменными?
  13. Какая из пар чисел является решением системы уравнений
    а) (6; 3)
    б) (- 3; — 6)
    в) (2; — 1)
    г) (3; 0)

  • Из каких уравнений можно составить систему уравнений, решением которой будет пара чисел (2; 1)
    а) 2х – у = 3
    б) 3х – 2у = 5
    в) х² + у² = 4
    г) ху = 2
  • III. Изучение нового материала. (слайд 16, 17)

    Сегодня мы разберем один из способов решения систем уравнений. Изучение нового материала осуществляется с помощью наглядного восприятия (на слайде представлено графическое решение системы уравнений):

    Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя неизвестными весьма разнообразны.

    Вопросы по данному слайду:

    • Что является графиком уравнения x² +y²=25?
    • Что является графиком уравнения y = —x² +2x +5?

    Координаты любой точки окружности будут удовлетворять уравнению x² + y²=25, координаты любой точки параболы будут удовлетворять уравнению y = — x² +2x +5.

    • Координаты каких точек будут удовлетворять и первому и второму уравнениям?
    • Сколько точек пересечения у данных графиков?
    • Сколько решений имеет данная система?
    • Назвать эти решения?
    • Что нужно сделать, чтобы графически решить систему уравнений с двумя переменными?

    Предлагается слайд, на котором приведен алгоритм графического способа решения систем уравнений с двумя неизвестными.

    Графический способ применим к решению любой системы, но с помощью графиков уравнений можно приближенно находить решения системы. Лишь некоторые найденные решения системы могут оказаться точными. В этом можно убедиться, подставив их координаты в уравнения системы.

    IV. Первичное осмысление и применение изученного способа решения систем уравнений.

    1. Решить графически систему уравнений (слайд 18)

    Постановка наводящих вопросов:

    • Что является графиком уравнения ху = 3?
    • Что является графиком уравнения 3х – у =0?
    • Сколько точек пересечения имеют данные графики?
    • Сколько решений имеет данная система уравнений?
    • Назвать решения данной системы уравнений?

    2. Запишите систему, определяемую этими уравнениями и ее решение. (слайд 19)

    Постановка наводящих вопросов:

    • Запишите систему, определяемую данными уравнениями?
    • Сколько точек пересечения имеют данные графики?
    • Сколько решений имеет данная система уравнений?
    • Назвать решения данной системы уравнений?

    3. Выполнение задание из ГИА (слайд 20).

    4. Решить графически систему уравнений (слайд 21)

    а) б)

    Задание выполняется учащимися в тетрадях. Решение проверяется.

    5. Тест. (Приложение 2)


    источники:

    http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij

    http://urok.1sept.ru/articles/595191