Система уравнений метод квадратного корня

Система уравнений метод квадратного корня

Обсуждение и решение задач по математике, физике, химии, экономике

Часовой пояс: UTC + 3 часа [ Летнее время ]

Часовой пояс: UTC + 3 часа [ Летнее время ]новый онлайн-сервис
число, сумма и дата прописью

Введение в анализ

Теория очередей (СМО)

Страница находится по новому адресу

Часовой пояс: UTC + 3 часа [ Летнее время ]

МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Метод квадратных корней.

Метод квадратных корней используется для решения линейной системы:

У которой матрица А симметрическая, т.е.

Он является более экономным и удобным по сравнению с методами решения систем общего вида, рассмотренными ранее.

Решение системы осуществляется в два этапа.

Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:

Перемножая матрицы Т’ и Т и приравнивая матрице A, получим следующие формулы для определения

После того, как матрица Т найдена, систему заменяем двумя эквивалентными ей системами с треугольными матрицами:

Обратный ход. Записываем в развернутом виде системы:

Отсюда последовательно находим:

При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.

Заметим, что при действительных могут получиться чисто мнимые . Метод применим и в этом случае .

Метод квадратных корней дает большой выигрыш во времени по сравнению с рассмотренными ранее методами, так как, во-первых, существенно уменьшает число умножений и делений (почти в два раза для больших n), во-вторых, позволяет накапливать сумму произведений без записи промежуточных результатов.

Задание. Решить систему линейных уравнений методом квадратных корней.

Провести эту работу в SMathStudio.

Схема Халецкого.

Рассмотрим систему линейных уравнений, записанную в матричном виде:

Где — квадратная матрица (i, j = 1, 2, . , n) и

Представим матрицу А в виде произведения А=ВС, где

Тогда элементы будут определяться по формулам

Отсюда искомый вектор х может быть вычислен из цепи уравнений

Так как матрицы B и С треугольные, то системы легко решаются, а именно:

Из формул видно, что числа выгодно вычислять вместе с коэффициентами Эта схема вычислений называется схемой Халецкого. В схеме применяется обычный контроль с помощью сумм.

Схема Халецкого удобна для работы на клавишных вычислительных машинах, так как в этом случае операции «накопления» можно проводить без записи промежуточных результатов.

Задание. Решить систему линейных уравнений методом Халецкого.

Провести эту работу в SMathStudio.

Метод простой итерации

Пусть система линейных уравнений

Каким-либо образом приведена к виду

где С – некоторая матрица, а f – вектор-столбец.

Исходя из произвольного вектора ,

сторим итерационный процесс

или в развернутой форме

Производя итерации, получим последовательность векторов

Доказано, что если элементы матрицы С удовлетворяют одному из условий

то процесс итерации сходится к точному решению системы х при любом начальном векторе , т.е.

Таким образом, точное решение системы получается лишь в результате бесконечного процесса и всякий вектор из полученной последовательности является приближенным решением. Оценка погрешности этого приближенного решения дается одной из следующих формул:

Эти оценки можно усилить соответственно так:

Процесс итераций заканчивают, когда указанные оценки свидетельствуют о достижении заданной точности.

Начальный вектор может быть выбран, вообще говоря, произвольно. Иногда берут Однако наиболее целесообразно в качестве компонент вектора взять приближенные значения неизвестных, полученные грубой прикидкой.

Первый способ. Если диагональные элементы матрицы А отлины от нуля, т. е.

то систему можно записать в виде:

В этом случае элементы матрицы С определяются следующим образом:

и тогда условия приобретают вид:

Неравенства будут выполнены, если диагональные элементы матрицы А удовлетворяют условию:

т.е. если модули диагональных коэффициентов для каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов).

Второй способ покажем на примере.

Вообще говоря, для любой системы с невырожденной матрицей существуют сходящиеся итерационные методы решения, но далеко не всегда они удобны для практических вычислений.

Если метод итераций сходится, он дает следующие преимущества по сравнению с методами, рассмотренными выше.

1) Если итерации сходятся достаточно быстро, т. е. если для решения системы требуется менее n итераций, то получаем выигрыш во времени, так как число арифметических действий, необходимых для одной итерации, пропорционально n 2 , а общее число арифметических действий в методе Гаусса, например, пропорционально n 3 .

2) Погрешности округления в методе итераций сказываются значительно меньше, чем в методе Гаусса. Кроме того, метод итераций является самоисправляющимся, т. е. отдельная ошибка, допущенная в вычислениях, не отражается на окончательном результате, так как ошибочное приближение можно рассматривать как новый начальный вектор.

Последнее обстоятельство часто используется для уточнения значений неизвестных, полученных методом Гаусса.

3) Метод итераций становится особенно выгодным при решении систем, у которых значительное число коэффициентов равно нулю. Такие системы появляются, например, при решении уравнений в частных производных.

4) Процесс итераций приводит к выполнению однообразных операций и сравнительно легко программируется на ЭВМ.

Задание. Решить систему линейных уравнений методом простых итераций.

Провести эту работу в SMathStudio.

Метод Зейделя.

Метод Зейделя является модификацией метода простой итерации. Он заключается в том, что при вычислении (k + 1)-го приближения неизвестного xi при i>1 используются уже вычисленные ранее (k + 1)-е приближения неизвестных Таким образом, для системы вычисления по методу Зейделя ведутся по формулам:

Указанные в методе простой итерации условия сходимости остаются верными и для метода Зейделя. Обычно метод Зейделя дает лучшую сходимость, чем метод простой терации, хотя это бывает не всегда. Кроме того, метод Зейделя может оказаться более удобным при программировании, так как при вычислении нет необходимости хранить значения

Задание. Решить систему линейных уравнений методом Зейделя.

Решение систем линейных уравнений алгоритмы общих и частных методов нахождения корней, основные правила и теоремы и примеры их использования, онлайн калькулятор

Совокупность математических записей, из которых каждая является линейным алгебраическим равенством первой степени, называется системой линейных уравнений. Её решение — это классическая задача алгебры, определяющая объекты и методы. Существует несколько принципиально разных способов нахождения ответа. Каждый из них имеет достоинства и недостатки, но выбор метода зависит лишь только от личных предпочтений решающего.

Понятия и обозначения

Для измерения геометрических или физических величин в математике используют действительное число — вещественное. В уравнении под ним понимают все свободные члены или неизвестные переменные. Вычисление линейных алгебраических уравнений играет важную роль в различных математических задачах: численных методах, программировании, эконометрике.

Общий вид системы линейных уравнений (СЛАУ) в классическом понимании представляют следующим образом:

a11 * n 1 + a 12 * n 2 + …+a 1x n x = c 1.

a21 * n 1 + a 22 * n 2 + …+a 2x n x = c 2.

as1 * n 1 + a 12 * n 2 + …+a 1x n x = c s.

В этой записи s — это количество уравнений, x — число переменных, а n — переменная которую необходимо вычислить. Предполагается что a и b это известные свободные члены. Индексы обозначают порядковый номер уравнения. Первый символ — расположение строчки, а второй — позиция произведения переменной и свободного члена.

Если эти члены отличные от нуля, то система называется неоднородной, в ином же случае однородной. Квадратной системой называется совокупность уравнений, когда их число совпадает с количеством неизвестных. Существует понятие и неопределённой системы. Это совокупность, при которой неизвестных больше числа уравнений. Если наоборот, то система считается переопределенной. В литературе её ещё часто называют прямоугольной.

Система считается решаемой, когда множество членов X соответствует такому набору чисел, что при их подстановке вместо n вся система обратится в тождество. Если существует хотя бы одно решение, система называется совместной. Ответы, превращающие уравнения в равенства, при которых переменные не совпадают, считаются различными.

Существует четыре способа развязывания системы уравнений:

  • способ подстановки;
  • использование новых переменных;
  • алгебраическое сложение;
  • матричный метод.

Вид используемого алгоритма зависит от типа примера. Метод алгебраического сложения применяют, когда в задании лишь одно неизвестное, а коэффициенты противоположны или равны. Если же хотя бы в одной из формул коэффициент равен единице, то удобнее будет решить систему уравнений методом подстановки. В иных случаях используют матрицы.

Алгебраическое сложение

Способ заключается в сложении или вычитании выражений. Это довольно простой способ и в то же время эффективный. Алгоритм нахождения ответа для равенств с двумя переменными n и m сводится к следующему:

  • уравниванию модулей коэффициентов при любом из неизвестных;
  • сложению или вычитанию равенства;
  • вычисления составленного выражения;
  • прогонки каждого найденного корня через первую или вторую строчку системы уравнений;
  • нахождению второго неизвестного.

То есть после выполнения арифметических действий с уравнениями должно получиться одно выражение с одним неизвестным. Затем находят значение этой переменной и в него подставляют полученный корень. Например, нужно узнать, какие корни системы, состоящей из двух строчек, превращают её в тождество:

В первую очередь необходимо сложить равенства между собой. В итоге получится:

Подставив поочерёдно в каждое равенство найденные корни можно найти второе неизвестное. Для корня n = – 5 ответом будет:

Соответственно, корнями будут числа два и минус два. Аналогичные действия необходимо выполнить и для корня другого знака n = 5. В итоге получится, что пары (− 5; − 2), (− 5; 2), (5; − 2), (5 ; 2) являются нужным ответом. При достаточном опыте подробно описывать решение не обязательно.

Существуют системы, требующие подготовительного этапа. Например, такого вида:

Исключить здесь сразу переменную не выйдет. Если умножить все члены первой строчки на тройку, а второй на четвёрку, получится запись:

9 * n – 12 * m = 15.

8 * n + 12 * m = 28.

Теперь равенства можно сложить, тем самым исключив переменную m. Затем система решается по базисному алгоритму. Чтобы понять, можно ли решить систему этим методом, следует предварительно её проанализировать. Необходимое условие заключается в том, что коэффициенты второй переменной должны быть одинаковыми по модулю, но противоположными по знаку.

Метод подстановки

Систему равенств возможно решить и способом подстановки. Используя любое из уравнений, можно выразить любую из неизвестных переменных, а затем подставить её в другое равенство. Алгоритм использования метода следующий:

  • через n в одном из уравнений выражают m;
  • подставляют полученное равенство вместо n в другое тождество;
  • решают уравнение и находя m;
  • поочерёдно подставляют найденные корни и получают ответ.

Например, нужно проверить, все ли целые корни могут быть у системы:

10 * n + 3 * m = 17.

Выразив m через n можно записать равенство: n = (8* m + 16) / 5. Так как n одинаково в обоих уравнениях, то следует подставить полученное тождество и записать: 10* n + 3*(8* n +16) / 5 = 17. Отсюда уже просто найти корень. Он будет равен дроби 1/2. Подставив его вместо n легко вычислить и второй корень: m = (8 * n + 16) / 5 = 4. Таким образом, у системы будет только один целый корень. При желании проверить ответ можно решить систему другим методом.

Использование матриц

Для систем с произвольным числом уравнений и неизвестных используют другие методы. Если система состоит из нелинейных дифференциальных уравнений с постоянными коэффициентами, то используют матричный способ. Этот метод предполагает применение обратной матрицы.

Пусть дана система с тремя неизвестными х1, х2, х3. Нужно найти значения, при которых равенства станут верными. Для нахождения решений используют три матрицы:

  • Коэффициент системы. При этом её определитель не должен быть равным нулю.
  • Вектора неизвестных. Именно его понадобится найти.
  • Столбца свободных членов.

Базисное решение строят на произведении первой и второй матрицы. В результате получают матрицу размером три на один. То есть вектор-столбец с тремя элементами. После выполнения действия получится, что системный вектор будет равен левой части системы и соответствовать третьей матрице. Таким образом, обозначив матрицы буквами А, Б, В, можно записать выражение А * Б = В и найти необходимую Б.

При умножении на А-1 (обратную матрицу) получают равенство: Е * Б = А-1 * В, где Е – единичная матрица получена из совместимости прямой и обратной. Так как при произведении с единичной матрицей значения не изменяются, то решением системы будет формула: Б = А-1 * В.

Способ Гаусса-Жордана

Частным случаем решения системы является Метод Гаусса — Жордана. Суть решения основана на составлении специальной таблицы. В первый столбец заносятся известные значения, то есть величины, расположенные после равно, а в три других коэффициенты, стоящие после неизвестных. Чтобы приступить к решению, необходимо выполнить три шага:

  • выбрать ключевой элемент из первых трёх столбцов;
  • переписать строчку с ключевым значением, предварительно разделив все элементы на это значение;
  • переписать оставшиеся элементы, при этом вычитая из него произведение соответствующих ему чисел.

В полученной новой матрице снова выбирают ключевой элемент и выполняют все действия снова. Шаги повторяют до тех пор, пока не получится матрица, состоящая из нулей и единиц. Значения корней системы будут находиться на пересечении столбцов со строчками напротив единиц.

Этот метод используют только при выполнении условия совместности. Его ещё называют способом простой итерации. Он был доказан и оптимизирован Зейделем. С помощью итерационного метода можно посчитать систему А* Б = В с точностью “е”. Составляют n уравнение на сходимость, а затем на точность. Затем из первого уравнения выражают n1, второго n2, третьего n3 и так далее. Новые n с индексом i +1 считаются через старые i. Зейдель предложил расширить решение и добавить снова для счёта индекс i+1.

Это фундаментальные способы решения сложных систем уравнений. Они трудные, требуют опыта и внимательности. Поэтому существуют специальные онлайн-калькуляторы по методу Гаусса с подробным решением, помогающие исследовать систему любой численности.

Теорема Кронекера — Капелли

Применяется она при проведении исследований без непосредственного решения. То есть для записи эквивалентной совокупности алгебраических уравнений с их минимальным числом. Теорема говорит о следующем: система уравнений А * Б = В имеет решение только тогда, когда ранг А равен (А, В), где последнее расширенная матрица, полученная из первого члена путём приписывания столбца В.

Это утверждение обобщает различные виды СЛАУ:

  • Несовместные – которые определяют при условии, что их ранг меньше ранга расширенной матрицы. Существование корней невозможно.
  • Совместные неопределённые – системы, имеющие бесконечное множество решений. В этом случае ранги равны, а количество неизвестных будет меньше.
  • Совместно определённые – в этом случае ранг равен расширенной матрице и количеству неизвестных. Точное решение будет одно.

Выводом из этой теоремы является то, что число главной переменной совокупности будет всегда равно рангу системы. При этом столбец свободных членов представляет собой линейную комбинацию столбцов матрицы А.

Решение Крамера

Пожалуй, это один из самых простых способов нахождения корней уравнений. Для решения строят несколько матриц. Основная получается из коэффициентов, стоящих при неизвестных. Она обозначается символом дельта. Вторую, дельта-икс, образуют из основной матрицы заменой первого столбца на ответы уравнений. Следующая, дельта-игрек, строится с заменой в основной матрице второго столбца на значения ответов и так далее.

Затем вычисляют дискриминант этих матриц, то есть их определитель. Для его поиска можно использовать способ треугольника или разложения. Первый подходит для простых матриц. Находят его как разницу умножения чисел, стоящих в матрице крест-накрест. Второй же применим для матриц, содержащих три и более строк. При нахождении выбирают одну из них и раскладывают матрицу.

Как только все дискриминанты найдены, используют правило Крамера: n = Δn/ Δ. Подставляют значения, находят ответ. Стоит отметить, что много интернет-порталов, предлагающих услугу расчётов СЛАУ, используют для вычислений онлайн-метод Крамера.

Удобные онлайн-калькуляторы

В некоторых случаях решение СЛАУ онлайн будет хорошим подспорьем для того, чтобы разобраться в различных правилах, используемых при решениях. Из популярных интернет-сервисов, позволяющих найти корни систем, можно отметить: kontrolnaya-rabota, mathsolution, planetcalc, allcalc. Использовать эти сайты-решатели смогут даже слабо подготовленные пользователи, имеющие общее представление о методах решений.

Для выполнения расчёта необходимо ввести параметры системы и нажать кнопку «Рассчитать». При этом можно выбрать метод, на базе которого будут проводиться вычисления. Удобным является и то, что полученный расчёт сопровождается объяснениями.

На этих порталах также можно посмотреть примеры и правила решений. Некоторые калькуляторы могут построить и график системы. Например, kontrolnaya-rabota. Для этого на сайте нужно выбрать раздел «Графическое решение уравнений онлайн» и ввести исследуемую систему равенств.


источники:

http://poisk-ru.ru/s3503t3.html

http://kupuk.net/uroki/algebra/reshenie-sistem-lineinyh-yravnenii-algoritmy-obshih-i-chastnyh-metodov-nahojdeniia-kornei-osnovnye-pravila-i-teoremy-i-primery-ih-ispolzovaniia-onlain-kalkyliator/

Метод квадратных корней для решения СЛАУ