Система уравнений называется несовместной если

Система уравнений называется несовместной если

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 26 Система двух линейных уравнений с двумя неизвестными.

Совместные и несовместные системы.

Системой двух линейных уравнений с двумя неизвестными называется совокупность уравнений вида

Примером системы двух линейных уравнений с двумя неизвестными может служить любая из систем:

Кстати, любую из этих систем можно назвать системой уравнений 1-й степени. Так называются системы вида (1), в которых хотя бы одно из уравнений содержит ненулевой коэффициент при х или при у.

Если в системе (1) оба свободных члена c1 и c2 равны нулю, то система называется однородной.

Если хотя бы один из свободных членов c1 и c2 отличен от нуля, то система называется неоднородной.

Так, из приведенных выше систем (2) — (7) однородными будут системы (2) и (5); все же остальные системы неоднородны.

Решением системы уравнений (1) называется такая пара чисел (х0, у0), которая каждое уравнение этой системы обращает в числовое равенство*:

* Это определение годится и для произвольных систем уравнений с двумя неизвестными.

Например, пара чисел (0, 0) является решением системы уравнений (2), поскольку

Пара чисел (1, 2) будет решением системы (3), так как

Пара чисел (2, 1) не будет решением системы (3), поскольку

Решением системы уравнений (3) не будет и пара чисел (2, 52). Действительно,

100 • 2 — 2 • 52 = 96,

—3• 2 + 57• 52 =/= 111.

Системы могут иметь различное число решений. Например, система уравнений (4) имеет, очевидно, единственное решение: х = 14, у = 1. В самом деле, из второго уравнения этой системы следует, что у = 1. Подставляя затем это значение у в первое уравнение, получаем: х — 2 • 1 = 12, откуда х = 14.

Система уравнений (5) имеет, очевидно, бесконечное множество решений. Действительно, при любом а пара чисел (а, а) обращает оба уравнения системы в числовые равенства. Поэтому любая такая пара чисел (а их бесконечное множество) является решением данной системы.

Наконец, существуют системы, которые вообще не имеют решений. Примером таких систем может служить система (6). Если бы она. имела решение (х0 , у0), то сумма двух чисел х0 и у0 должна была бы равняться одновременно и 0 и 1. Но этого быть не может.

Таким образом, существуют системы линейных уравнений, имеющие ровно одно решение, бесконечное множество решений и, наконец, совсем не имеющие решений.

Система уравнений, имеющая хотя бы одно решение, называется совместной, а не имеющая ни одного решения — несовместной.

Например, системы уравнений (2) и (3) совместны, а система (6) несовместна.

Для каждой однородной системы уравнений

пара чисел (0, 0) является решением. Поэтому любая однородная система уравнений совместна. В частности, совместными являются приведенные выше системы (2) и (5).

Решить систему уравнений

— это значит: 1) выяснить, является ли она совместной, и 2) если она совместна, то найти все ее решения.

220. Можно ли системы:

— назвать системами двух линейных уравнений с двумя неизвестными?

221. Показать, что ни при каких значениях а системы уравнений

не являются однородными.

222. Доказать, что если система двух уравнений 1-й степени с двумя неизвестными имеет нулевое решение (то есть решение х = 0, у = 0), то она является однородной. Верно ли обратное утверждение?

Система уравнений называется несовместной если

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

Найдем матрицу обратную матрице A.

,

Таким образом, x = 3, y = – 1.

Решите матричное уравнение: XA+B=C, где

Выразим искомую матрицу X из заданного уравнения.

Найдем матрицу А -1 .

Решите матричное уравнение AX+B=C, где

Из уравнения получаем .

Следовательно,

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

. Поэтому .

  1. При
  2. При p = 30 получаем систему уравнений которая не имеет решений.
  3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

Вернувшись к системе уравнений, будем иметь

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Вернемся к системе уравнений.

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

Система уравнений называется несовместной если

линейных уравнений называется совместной, если у неё есть хотя бы одно решение, и несовместной, если решений нет. В примере 14 система совместна, столбик является её решением:

Это решение можно записать и без матриц: x = 2, у = 1.

Систему уравнений будем называть неопределённой, если она имеет более одного решения, и определённой, если решение единственно.

Пример 15. Система является неопределённой. Например, . являются её решениями. Читатель может найти и много других решений этой системы.

Научимся решать системы линейных уравнений сначала в частном случае. Систему уравнений AX = B будем называть крамеровской, если её основная матрица А — квадратная и невырожденная. Другими словами, в крамеровской системе число неизвестных совпадает с числом уравнений и |A| = 0.

Теорема 6 (правило Крамера). Крамеровская система линейных уравнений имеет единственное решение, задаваемое формулами:

где Δ = |A| — определитель основной матрицы, Δi — определитель, полученный из A заменой i-го столбика столбиком свободных членов.

Доказательство проведём для n = 3, так как в общем случае рассуждения аналогичны.

Итак, имеется крамеровская система:

Допустим сначала, что решение системы существует, т. е. имеются

Умножим первое . равенство на алгебраическое дополнение к элементу aii, второе равенство — на A2i, третье — на A3i и сложим полученные равенства:


источники:

http://toehelp.ru/theory/math/lecture14/lecture14.html

http://www.chem-astu.ru/chair/study/algebra-geometry/?p=46