Система уравнений первой степени это

Системы линейных уравнений

Линейные уравнения (уравнения первой степени) с двумя неизвестными
Системы из двух линейных уравнений с двумя неизвестными
Системы из трех линейных уравнений с тремя неизвестными

Линейные уравнения (уравнения первой степени) с двумя неизвестными

Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

ax +by = c ,(1)

где a , b , c – заданные числа.

Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.

Пример 1 . Найти решение уравнения

2x +3y = 10(2)

Решение . Выразим из равенства (2) переменную y через переменную x :

(3)

Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

где x – любое число.

Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

Системы из двух линейных уравнений с двумя неизвестными

Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

(4)

Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .

Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).

Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

Равносильность систем уравнений обозначают, используя символ «»

Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.

Пример 2 . Решить систему уравнений

(5)

Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

(6)

Теперь совершим над системой (6) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (6) преобразуется в равносильную ей систему

Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

Пример 3 . Найти все значения параметра p , при которых система уравнений

(7)

а) имеет единственное решение;

б) имеет бесконечно много решений;

в) не имеет решений.

Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

Следовательно, система (7) равносильна системе

(8)

Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

y (2 – p) (2 + p) = 2 + p(9)

Если , то уравнение (9) имеет единственное решение

Следовательно, система (8) равносильна системе

Таким образом, в случае, когда , система (7) имеет единственное решение

Если p = – 2 , то уравнение (9) принимает вид

,

и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел

,

где y – любое число.

Если p = 2 , то уравнение (9) принимает вид

и решений не имеет, откуда вытекает, что и система (7) решений не имеет.

Системы из трех линейных уравнений с тремя неизвестными

Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

(10)

Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

Пример 4 . Решить систему уравнений

(11)

Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
  • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

В результате система (11) преобразуется в равносильную ей систему

(12)

Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

  • первое и второе уравнения системы оставим без изменений;
  • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

В результате система (12) преобразуется в равносильную ей систему

(13)

Из системы (13) последовательно находим

Пример 5 . Решить систему уравнений

(14)

Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:

Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):

Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».

Алгебра. 7 класс

Конспект урока

Решение задач при помощи систем уравнений первой степени

Перечень рассматриваемых вопросов:

• Решение системы уравнений.

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Решить систему – это значит найти все её решения.

Алгебраический способ состоит в получении ответа на вопрос задачи с помощью составления уравнения или системы уравнений и последующего решения уравнения или системы.

  1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
  1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
  2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
  3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Рассмотрим задачу. Сошлись два пастуха, Иван и Пётр. Иван и говорит Петру: «Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя!» А Пётр ему отвечает: «Нет, лучше ты мне отдай одну овцу, тогда у нас будет овец поровну!» Сколько же было у каждого овец?

Мы не знаем, сколько овец у Ивана, и сколько у Петра.

Обозначим за х число овец у Ивана, а за у – число овец у Петра.

Мысленно разделим условие задачи на две независимые части:

1. Иван и говорит Петру: «Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя!»

2. А Пётр ему отвечает: «Нет, лучше ты мне отдай одну овцу, тогда у нас будет овец поровну!»

Для каждой из частей составим уравнение с двумя неизвестными.

Начнем с первой части.

Если бы Пётр отдал Ивану одну овцу, то у Петра осталось бы (у – 1) овец.

А у Ивана стало бы (х + 1) овец.

Но тогда у Ивана было бы вдвое больше овец, чем у Петра.

Можем составить уравнение x + 1 = 2(y – 1).

Составим уравнение с двумя неизвестными для второй части. Если бы Иван отдал Петру 1 овцу, то у Ивана осталось бы (x – 1) овец. А у Петра стало бы (y + 1) овец, и тогда они имели бы овец поровну. Можем составить уравнение: x – 1 = y + 1

Мы составили два уравнения.

И в первом и во втором уравнении х обозначает число овец у Ивана, а у – число овец у Петра. Другими словами, каждое неизвестное число обозначает одно и то же в обоих уравнениях. Значит, эти уравнения можно рассматривать совместно, то есть объединить их в систему уравнений:

Решим эту систему способом подстановки.

Раскроем скобки в правой части первого уравнения.

Выразим х через у.

Подставим (2у – 3) вместо х во второе уравнение системы. Получим уравнение с одним неизвестным у.

Решим его. Упростим левую часть уравнения.

Перенесем неизвестные в левую часть. уравнения, а числа – в правую.

Подставим у = 5 в первое уравнение.

Система имеет единственное решение: х = 7, у = 5.

Вернемся к исходным обозначениям.

Получаем, что у Ивана было 7 овец, а у Петра 5 овец.

Таким образом, мы решили задачу при помощи системы уравнений первой степени.

Задачи с помощью системы уравнений можно решать по следующей схеме.

Сначала вводим обозначения неизвестных.

Мысленно разделив условие задачи на две части, составляем 2 уравнения и объединяем их в систему.

Решаем полученную систему уравнений.

Возвращаемся к условию задачи и использованным обозначениям.

Отбираем решения и записываем ответ.

Разбор заданий из тренировочного модуля.

1. Решим задачу алгебраическим способом.

Даны 3 числа, сумма которых равна 23. Если к удвоенному первому числу прибавить второе число и вычесть третье, то получится 32. А если из первого числа вычесть удвоенное второе и прибавить третье, то получится 8.

В задаче 3 неизвестные, поэтому введем следующие обозначения:

Пусть х – первое число, у – второе число, z – третье число.

Мысленно разделим условие задачи на 3 части, по каждой из которых составим уравнение с тремя неизвестными:

Вернёмся к условию задачи: первое число 15, второе число 5, третье число 3.

Составим систему уравнений по условию задачи.

В трех сосудах 54л воды. Если из первого перелить во второй сосуд 4л, то в обоих сосудах будет воды поровну, а если из третьего сосуда перелить во второй 17л, то во втором сосуде окажется в 4 раза больше воды, чем в третьем. Сколько воды в каждом сосуде?

Пусть x л воды было в первом сосуде, y л воды – во втором, z воды – в третьем. Значит, всего в трёх сосудах было x + y + z л воды, что равно 54 л. Составим уравнение: x + y + z = 54.

Когда из первого сосуда перелили 4 л воды во второй сосуд, то во втором сосуде стало y + 4 л воды, а в первом сосуде x – 4 л воды. По условию задачи воды стало в сосудах поровну. Составляем уравнение:

Если из третьего сосуда перелить во второй 17 л, то в третьем останется z – 17 л, а во втором станет y + 17 л. По условию задачи во втором сосуде окажется в 4 раза больше воды, чем в третьем. Можем составить уравнение: y + 17 = 4(z – 17).

Записываем систему уравнений:

2. Система уравнений по условию задачи.

Составим систему уравнений по условию задачи: 5% одного числа и 4% другого вместе составляют 46, а 4% первого числа и 5% второго вместе составляют 44. Найдите эти числа.

Уравнения и системы уравнений первой степени

Уравнения и системы уравнений первой степени

Два числа или какие-нибудь выражения, соединенные знаком « = », образуют равенство. Если данные числа или выражения при любых значениях букв равны, то такое равенство называют тождеством.

Например, когда утверждают, что при любом а действительном:

а + 1 = 1 + а, здесь равенство является тождеством.

Уравнением называется равенство, содержащее неизвестные числа, обозначенные буквами. Эти буквы называют неизвестными. Неизвестных в уравнении может быть несколько.

Например, в уравнении 2х + у = 7х – 3 два неизвестных: х и у.

Выражение, стоящее в уравнении слева (2х + у) называют левой частью уравнения, а выражение, стоящее в уравнении справа (7х – 3), называют правой его частью.

Значение неизвестного, при котором уравнение становится тождеством, называется решением или корнем уравнения.

Например, если в уравнение 3х + 7=13 вместо неизвестного х подставить число 2, получим тождество . Следовательно, значение х = 2 удовлетворяет данному уравнению и число 2 есть решение или корень данного уравнения.

Два уравнения называются равносильными (или эквивалентными), если все решения первого уравнения являются решениями второго и наоборот, все решения второго уравнения являются решениями первого. К равносильным уравнениям относятся также уравнения, не имеющие решений.

Например, уравнения 2х – 5 = 11 и 7х + 6 = 62 равносильны, так как они имеют один и тот же корень х = 8; уравнения х + 2 = х + 5 и 2х + 7 = 2х равносильны, потому что оба не имеют решений.

Свойства равносильных уравнений

1. К обеим частям уравнения можно прибавить любое выражение, имеющее смысл при всех допустимых значениях неизвестного; полученное уравнение будет равносильно данному.

Пример. Уравнение 2х – 1 = 7 имеет корень х = 4. Прибавив к обеим частям по 5, получим уравнение 2х – 1 + 5 = 7 + 5 или 2х + 4 = 12, которое имеет тот же корень х = 4.

2. Если в обеих частях уравнения имеются одинаковые члены, то их можно опустить.

Пример. Уравнение 9х + 5х = 18 + 5х имеет один корень х = 2. Опустив в обеих частях 5х, получим уравнение 9х = 18, которое имеет тот же корень х = 2.

3. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.

Пример. Уравнение 7х — 11 = 3 имеет один корень х = 2. Если перенести 11 в правую часть с противоположным знаком, получим уравнение 7х = 3 + 11, которое имеет то же решение х = 2.

4. Обе части уравнения можно умножить на любое выражение (число), имеющее смысл и отличное от нуля при всех допустимых значениях неизвестного, полученное уравнение будет равносильно данному.

Пример. Уравнение 2х — 15 = 10 – 3х имеет корень х = 5. Умножив обе части на 3, получим уравнение 3(2х – 15) = 3(10 – 3х) или 6х – 45 =30 – 9х, которое имеет тот же корень х = 5.

5. Знаки всех членов уравнения можно изменить на противоположные (это равносильно умножению обеих частей на (-1)).

Пример. Уравнение – 3х + 7 = – 8 после умножения обеих частей на (-1) примет вид 3х — 7 = 8. Первое и второе уравнения имеют единственный корень х = 5.

6. Обе части уравнения можно разделить на одно и тоже число, отличное от нуля (то есть, не равное нулю).

Пример. Уравнение имеет два корня: и . Разделив все его члены на 3, получим уравнение , равносильное данному, так как оно имеет те же два корня: и .

7. Уравнение, в котором коэффициенты всех или нескольких членов дробные числа, можно заменить равносильным ему уравнением с целыми коэффициентами, для этого обе части уравнения надо умножить на наименьшее общее кратное знаменателей дробных коэффициентов.

Пример. Уравнение после умножения обеих частей на 14 примет вид:

. Легко убедиться в том, что первое и последнее уравнения имеют корень х = 10.

Уравнения первой степени

Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид , где произвольные числа, х – неизвестное, называется уравнением первой степени с одним неизвестным (или линейным уравнением с одним неизвестным).

Пример. 2х + 3 = 7 – 0,5х ; 0,3х = 0.

Уравнение первой степени с одним неизвестным всегда имеет одно решение; линейное уравнение может не иметь решений () или иметь их бесконечное множество ().

Пример. Решить уравнение .

Решение. Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

.

После сокращения получим: . Раскроем скобки, чтобы отделить члены, содержащие неизвестное и свободные члены:

.

Сгруппируем в одной части (левой) члены, содержащие неизвестное, а в другой части (правой) — свободные члены:

. Приведем подобные члены: . Разделив обе части на (-22), получим х = 7.

Системы двух уравнений первой степени с двумя неизвестными

Уравнение вида , где называется уравнением первой степени с двумя неизвестными х и у. Если находят общие решения двух и более уравнений то говорят, что эти уравнения образуют систему, их записывают обычно одно под другим и объединяют фигурной скобкой, например .

Каждая пара значений неизвестных, которая одновременно удовлетворяет обоим уравнениям системы, называется решением системы. Решить систему – это значит найти все решения этой системы или показать, что она их не имеет. Две системы уравнений называются равносильными (эквивалентными), если все решения одной из них являются решениями другой и наоборот, все решения другой являются решениями первой.

Например, решением системы является пара чисел х = 4 и у = 3. Эти числа являются также единственным решением системы . Следовательно, эти системы уравнений равносильны.

Способы решения систем уравнений

1. Способ алгебраического сложения. Если коэффициенты при каком-нибудь неизвестном в обоих уравнениях равны по абсолютной величине, то складывая оба уравнения (или вычитая одно из другого), можно получить уравнение с одним неизвестным. Решая это уравнение, определяют одно неизвестное, а подставляя его в одно из уравнений системы, находят второе неизвестное.

Примеры: Решить системы уравнений: 1) .

Здесь коэффициенты при у по абсолютной величине равны между собой, но противоположны по знаку. Для получения уравнения с одним неизвестным уравнения системы почленно складываем:

Полученное значение х = 4 подставляем в какое-нибудь уравнение системы, например в первое, и находим значение у: .

2) .

Уравняем коэффициенты при х. Для этого умножим первое уравнение на 3, а второе на (– 2) и сложим полученные уравнения.

Ответ: .

2. Способ подстановки. Из любого уравнения системы одну из неизестных выражаем через остальные, а затем подставляем значение этой неизвестной в остальные уравнения. Рассмотрим этот способ на конкретных примерах:

1) Решим систему уравнений . Выразим из первого уравнения одно из неизвестных, например х: и подставим полученное значение х во второе уравнение системы, получим уравнение с одним неизвестным у:

Подставим у = 1 в выражение для х, получим .

Ответ: .

2) . В этом случае удобно выразить у из второго уравнения:

. Полученное значение у подставляем в первое уравнение и получаем уравнение с одним неизвестным х:

Подставим значение х = 5 в выражение для у, получим .

Ответ: .

3) Решим систему уравнений . Из первого уравнения находим . Подставив это значение во второе уравнение, получим уравнение с одним неизвестным у:

Подставим у = 5 в выражение для х, получим

Ответ: .

3. Способ замены. К cистемам двух линейных уравнений с двумя неизвестными можно приводить некоторые нелинейные системы. Это можно осуществлять способом замены.

Пример. Решить систему. .

Перепишем систему в виде: . Заменим неизвестные, положив , получим линейную систему . Из первого уравнения выразим неизвестное . Подставим значение во второе уравнение, получим уравнение с одним неизвестным:

. Подставив значение v в выражение для t, получим: . Из соотношений находим .

Ответ: .

Исследование системы уравнений

Исследуем сколько решений может иметь система уравнений , где — коэффициенты при неизвестных, — свободные члены.

А) Если , то система имеет единственное решение.

Б) Если , то система не имеет решений.

В) Если , то система имеет бесконечное множество решений.

Пример. . В данной системе отношение коэффициентов при одинаковых неизвестных не равны (), значит система имеет единственное решение.

Действительно, .

.

Ответ: .

Пример. . В данной системе или после сокращения , следовательно, система не имеет решений.

Пример. . В данной системе или после сокращения , значит, система имеет бесконечное множество решений.

Уравнения, содержащие модуль

При решении уравнений, содержащих модуль, используется понятие модуля действительного числа. Модулем (абсолютной величиной) действительного числа а называется само это число, если и противоположное число ( – а), если . Модуль числа а обозначается .

Итак, . Например, , так как число 3 > 0; , так как число – 5 0, то квадратное уравнение имеет два решения (корня): и .

Если D = 0, квадратное уравнение, очевидно, имеет два одинаковых решения (кратных корня).


источники:

http://resh.edu.ru/subject/lesson/7271/conspect/

http://pandia.ru/text/78/105/1499.php