Система уравнений в симметрической форме

СИСТЕМЫ УРАВНЕНИЙ В СИММЕТРИЧНОЙ ФОРМЕ

МЕТОД ИСКЛЮЧЕНИЯ

Пример.

Решить задачу Коши для системы дифференциальных уравнений:

Решение: Дифференцируя второе уравнение, имеем:

Чтобы исключить из полученного уравнения и заменим в нем и их значениями из данной системы. Получим: , откуда;

; запишем , то есть ( , откуда , тогда .

Для нахождения воспользуемся вторым из уравнений системы и найденным значением . Имеем:

откуда . Следовательно, общим решение данной системы будет:

Решим теперь поставленную задачу Коши. Подставляя в общее решение вместо их начальные значения , имеем:

откуда , так что искомым частным решение будет:

НАХОЖДЕНИЕ ИНТЕГРИРУЕМЫХ КОМБИНАЦИЙ

Интегрируемые комбинации – легко интегрируемые дифференциальные уравнения, полученные из данной системы, путём несложных преобразований. Построение интегрируемых комбинаций позволяет находить первые интегралы системы и понижать порядок этой системы. В целом, если для системы, состоящей из уравнений, найдено независимых первых интегралов, то тем самым найден общий интеграл этой системы, и её интегрирование окончено.

Пример. Решить СДУ:

Для нахождения интегрируемых комбинаций данной системы перепишем ее в симметричной форме:

Умножим все знаменатели на

Одной из интегрируемых комбинаций будет

Для получения второй интегрируемой комбинации вычтем в системе в симметричной форме из числителя и знаменателя первой дроби, соответственно числитель и знаменатель второй дроби. Эта операция в данном случае осмыслена, так как равносильно вычитанию из первого уравнения исходной системы её второго уравнения.

Отсюда находим второй первый интеграл:

Общее решение имеет вид

ПОСЛЕДОВАТЕЛЬНОЕ ИНТЕГРИРОВАНИЕ

Пример.

Решение: Первое уравнение решается независимо от второго. Разделяя в нём переменные и интегрируя, получим: . Подставляя найденное значение во второе уравнение, получим , откуда .

.

СВЕДЕНИЕ К ОДНОМУ ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ

Решение: Дифференцируя обе части первого из данных уравнений имеем:

Из второго уравнения находим , следовательно:

Общее решение этого уравнения есть

Из первого уравнения системы находим

Окончательно, общее решение системы уравнений:

СИСТЕМЫ УРАВНЕНИЙ В СИММЕТРИЧНОЙ ФОРМЕ

Пример 1. Решить систему дифференциальных уравнений

Решение: Из уравнения находим один из интегралов данной системы . Найдём ещё один интеграл, образовав интегрируемую комбинацию:

Имеем . Общее решение: .

Пример 2. Решить систему дифференциальных уравнений

с начальным условием =1, z(0)=2.

Решение. Имеем систему линейных дифференциальных уравнений. Вид её несимметричный, однако начальные условия дают основания проверить предположение, что искомые функции связаны соотношением . Проверим это предположение, исключая искомую функцию из системы подстановкой вместо неё функции . Оба уравнения системы при этом принимают вид , частное решение этого уравнения с учётом начального условия имеет вид . Одновременно найдена и другая искомая функция .

Нахождение интегрируемых комбинаций.
Симметрическая форма системы дифференциальных уравнений

Нахождение интегрируемых комбинаций

Этот метод интегрирования системы дифференциальных уравнений

состоит в следующем: с помощью проходящих арифметических операций (сложения, вычитания, умножения, деления) из уравнений системы (I) образуют так называемые интегрируемые комбинации, т.е. достаточно просто решаемые уравнения вида

где — некоторая функция от искомой функции . Каждая интегрируемая комбинация дает один первый интеграл . Если найдено независимых первых интегралов системы (1), то ее интегрирование закончено; если же найдено независимых первых интегралов, где , то система (1) сводится к системе с меньшим числом неизвестных функций.

Пример 1. Решить систему

Решение. Складывая почленно оба уравнения, получаем

Вычитая почленно оба уравнения, получаем

Итак, найдены два первых интеграла данной системы

которые являются независимыми, так как якобиан отличен от нуля:

Общий интеграл системы (2)

Разрешая систему (3) относительно неизвестных функций, получаем общее решение системы (2):

Пример 2. Решить систему

Решение. Вычитая почленно из первого уравнения второе, получаем , откуда первый интеграл системы (4)

Подставив (5) во второе и третье уравнения системы (4), получим систему с двумя неизвестными функциями

Из второго уравнения системы (6) находим

Подставляя (7) в первое уравнение системы (6), будем иметь

Отсюда находим общее решение системы (4):

Пример 3. Найти частное решение системы

Решение. Запишем данную систему в виде

Складывая почленно последние уравнения, получаем

Отсюда находим первый интеграл . Так как , то второе уравнение системы примет вид , откуда . Итак,

откуда получаем общее решение

Полагая в этих равенствах, найдем , т.е. , и искомым частным решением будет

Пример 4. (разложение вещества). Вещество разлагается на два вещества и со скоростью образования каждого из них, пропорциональной количеству неразложившегося вещества. Найти закон изменения количеств и веществ и в зависимости от времени , если при имеем , а через час , где — первоначальное количество вещества .

Решение. В момент времени количество неразложившегося вещества равно . В силу условия задачи будем иметь

Разделив почленно второе уравнение на первое, получим

При имеем , поэтому из последнего уравнения находим , а значит

Подставив (9) в первое уравнение системы, получим уравнение

Используя начальное условие , найдем , так что

Подставляя (10) в (9), будем иметь

Для определения коэффициентов и примем за единицу времени час. Учитывая, что при , из (10) и (10′) найдем

так что , и искомое решение системы (8)

Пример 5. (равновесие газов в сообщающихся сосудах). Пусть имеются для сосуда объемов и соответственно, наполненные газом. Давление газа в начальный момент времени равно в первом сосуде и — во втором. Сосуды соединены трубкой, по которой газ перетекает из одного сосуда в другой. Считая, что количество газа, перетекающего в одну секунду, пропорционально разности квадратов давлений, определить давления и в сосудах в момент времени .

Решение. Пусть — количество газа, перетекающего в единицу времени при разности давлений, равной единице. Тогда в течение времени из одного сосуда в другой протечет количество газа . Это количество равно убыли газа за время в одном сосуде и прибыли за то же время — в другом. Последнее выражается системой уравнений

где — постоянный коэффициент.

Вычитая почленно уравнения системы (II), получаем

Умножим обе части первого уравнения системы (11) на , а второго — на и сложим почленно:

Учитывая (12) и деля обе части (13) на , будем иметь

Симметрические системы уравнений и системы, содержащие однородные уравнения

Разделы: Математика

Цели урока:

  • образовательная: обучение решению систем уравнений, содержащих однородное уравнение, симметрических систем уравнений;
  • развивающая: развитие мышления, внимания, памяти, умения выделять главное;
  • воспитательная: развитие коммуникативных навыков.

Тип урока: урок изучения нового материала.

Используемые технологии обучения:

Оборудование: компьютер, мультимедийный проектор.

За неделю до урока учащиеся получают темы творческих заданий (по вариантам).
I вариант. Симметрические системы уравнений. Способы решения.
II вариант. Системы, содержащие однородное уравнение. Способы решения.

Каждый ученик, используя дополнительную учебную литературу, должен найти соответствующий учебный материал, подобрать систему уравнений и решить её.
По одному учащемуся от каждого варианта создают мультимедийные презентации по теме творческого задания. Учитель при необходимости проводит консультации для учащихся.

Содержание урока

I. Мотивация учебной деятельности учащихся

Вступительное слово учителя
На предыдущем уроке мы рассматривали решение систем уравнений методом замены неизвестных. Общего правила выбора новых переменных не существует. Однако, можно выделить два вида систем уравнений, когда есть разумный выбор переменных:

  • симметрические системы уравнений;
  • системы уравнений, одно из которых однородное.

II. Изучение нового материала

Учащиеся II варианта отчитываются о проделанной домашней работе.

1. Демонстрация слайдов мультимедийной презентации «Системы, содержащие однородное уравнение» (презентация 1).

Учащиеся записывают в тетради:

2. Работа в парах учащихся, сидящих за одной партой: учащийся II варианта объясняет соседу по парте решение системы, содержащей однородное уравнение.

Отчёт учащихся I варианта.

1. Демонстрация слайдов мультимедийной презентации «Симметрические системы уравнений» (презентация 2).

Учащиеся записывают в тетради:

2. Работа в парах учащихся, сидящих за одной партой: учащийся I варианта объясняет соседу по парте решение симметрической системы уравнений.

III. Закрепление изученного материала

Работа в группах (в группу по 4 ученика объединяются учащиеся, сидящие за соседними партами).
Каждая из 6 групп выполняет следующее задание.

Определить вид системы и решить её:

Учащиеся в группах анализируют системы, определяют их вид, затем, в ходе фронтальной работы обсуждают решения систем.

симметрическая, введем новые переменные x+y=u, xy=v

содержит однородное уравнение.

Пара чисел (0;0) не является решением системы.

IV. Контроль знаний учащихся

Самостоятельная работа по вариантам.

Решите систему уравнений:

Учащиеся сдают тетради учителю на проверку.

V. Домашнее задание

1. Выполняют все учащиеся.

Решите систему уравнений:

2.Выполняют «сильные» учащиеся.

Решите систему уравнений:

VI. Итог урока

Вопросы:
С какими видами систем уравнений вы познакомились на уроке?
Какой способ решения систем уравнений применяется при их решении?

Сообщение оценок, полученных учащимися в ходе урока.


источники:

http://mathhelpplanet.com/static.php?p=nahozhdenie-integriruemyh-kombinatsii

http://urok.1sept.ru/articles/512536