Системе линейных уравнений соответствует расширенная матрица

04. Метод Гаусса

СИстеме линейных уравнений (1) соответствуют три матриц

, .

Первая матрица называется Матрицей системы, вторая — Расширенной или Присойдиненной матрицей системы, третья — Столбцом свободных членов.

Система линейных уравнений называется Системой ступенчатого вида, если расширенная матрица системы есть матрица ступенчатого вида. Неизвестные с коэффициентами неравными нулю, которые стоят первыми в уравнениях системы ступенчатого вида называются Главными неизвестными, а остальные неизвестные называются Свободными.

Линейное уравнение, в котором все коэффициенты равны нулю, а свободный член не равен нулю, т. е. уравнение вида:

,

Не имеет решений. Действительно, если — решение этого уравнения, то получим противоречие с условием. Такое уравнение называем Противоречивым.

Пусть не все уравнения системы (1) нулевые. Тогда и расширенная матрица системы (1) ненулевая. По теореме 2 ее можно конечным числом элементарных преобразований и преобразований выбрасывания нулевой строки можно привести к матрице ступенчатого вида. Полученной матрице соответствует система линейных уравнений ступенчатого вида. Этим преобразованиям расширенной матрицы системы (1) соответствуют такие же преобразования системы линейных уравнений (1). По теореме 1 они переводят систему (1) в равносильную систему линейных уравнений, которая будет являются системой ступенчатого вида.

Таким образом мы доказали первую часть следующей теоремы.

Теорема 3. Любую систему линейных уравнений, содержащую ненулевое уравнение конечным числом элементарных преобразований и преобразований вычеркивания нулевого уравнения можно привести к равносильной ей системе ступенчатого вида. При этом возможны следующие три случая.

1. Если в полученной системе линейных уравнений ступенчатого вида есть противоречивое уравнение, то данная система не имеет решений.

2. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе равно числу неизвестных, то данная система имеет единственное решение.

3. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе меньше числа неизвестных, то данная система имеет бесконечно много решение.

Доказательство. Пусть дана система (1), содержащая ненулевое уравнение. По выше доказанному, она конечным числом элементарных преобразований она может быть преобразована к равносильной ей системе уравнений ступенчатого вида. Возможны случаи.

В полученной системе ступенчатого вида есть противоречивое уравнение. Тогда ни один набор чисел Не удовлетворяет системе, и система (1) не имеет решений.

В полученной системе ступенчатого вида нет противоречивого уравнения. Тогда в каждом из уравнений системы ступенчатого вида содержится главное неизвестное. Отсюда получаем, что число главных неизвестных, а тем более число всех неизвестных, не менее числа уравнений в системе ступенчатого вида. Тогда возможны под случаи:

В системе ступенчатого вида число уравнений равно числу неизвестных, т. е. система имеет вид:

(12)

Где Все неизвестные в системе являются главными. Из последнего уравнения находим единственное значение для неизвестного : . Подставляя найденное значение в предпоследнее уравнение, находим для неизвестного единственное значение и т. д. Наконец из первого уравнения по найденным значениям неизвестных из первого уравнения находим единственное значение неизвестного . Таким образом, система (12), а поэтому и система (1) имеет единственное решение.

В системе ступенчатого вида число уравнений меньше числа неизвестных. В этом случае матрица полученной системы имеет вид (11), а

Систему можно записать в виде:

(13)

Где В этой системе R главных неизвестных , все остальные Свободные (в системе они обзначены точками. Возьмем для свободных неизвестных произвольные значения. Тогда значения главных неизвестных найдутся однозначно из системы (13). Так как главные неизвестные можно выбрать бесконечным числом способов, то получим, что система (13), а поэтому и система (1) имеет бесконечно много решений.

Следствие. Если в системе однородных уравнений число неизвестных больше числа уравнений, то система имеет бесконечно много решений.

Действительно, система однородных уравнений всегда имеет нулевое решение , и при приведении ее к ступенчатому виду всегда получим систему, в которой число неизвестных больше числа уравнений.

Метод исследования и решения систем линейных уравнений, изложенный в доказательстве теорем 3 называется методом Гаусса.

Пример 1. Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

.

Составим по полученной матрице ступенчатого вида систему линейных уравнений ступенчатого вида:

В полученной системе число уравнений равно числу неизвестных и полученная система имеет единственное решение, которое двигаясь вверх последовательно находим:

Решение системы .

Пример 2. Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

Соответствующая система имеет противоречивое уравнение. Поэтому данная система не имеет решений.

Пример 3. Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

Составим систему ступенчатого вида:

Пусть свободная неизвестная . Тогда находим

Решение системы , где .

Расширенная матрица

Расширенная матрица представляет собой краткое обозначение системы линейных алгебраических уравнений (SLAE).

Пусть множество SLAU

Матрица А, составленная из коэффициентов для неизвестных ,называется главной матрицей системы или матрицы системы:

Матрица , полученная из основной матрицы, путем добавления столбца свободных членов вправо, называется расширенной матрицей SLAE:

Примеры решения задач с расширенными матрицами

Выписать основные и расширенные матрицы следующей системы линейных уравнений

Мы составляем основную матрицу коэффициентов с неизвестными

Добавив столбец свободных членов справа от основной матрицы, получим расширенную матрицу:

Расширенная матрица СЛАУ. Элементарные преобразования расширенной матрицы СЛАУ.

Расширенная матрица СЛАУ:

[AB] – расширенная матрица-система

А= X= B=

АВ =

Элементарные преобразования расширенной матрицы СЛАУ:

1 – перемены местами любых столбцов матрицы А и любых строк расширенной матрицы АВ всегда допустимо.

2 – можно удалять нулевые строки, одну из одинаковых строк, и строки, элементы которых пропорциональны.

3 – любую строку расширенной матрицы АВ можно умножить на отличное от 0 число.

4 – допустимо прибавлять к элементам строки элементы другой строки, умноженные на произвольное число.

Вопрос №11
Метод Гаусса для решения СЛАУ.

Метод Гаусса – метод последовательного исключения переменных, заключающийся в том, что с помощью элементарных преобразований система приводится к ступенчатому виду, из которой по порядку, начиная с самого последнего номера, находятся все переменные.

При решении системы методом Гаусса выполняется прямой и обратный ход, а затем следует проверка:

1) При прямом ходе: расширенная матрица-система приводится к ступенчатому виду;

2) При обратном ходе последовательно находятся переменные;

Вопрос №12

Ранг матрицы. Теорема Кронекера-Капелли.

Ранг матрицы:


Рангом произвольной матрицы
А, приведенной к каноническому виду, называется минимальное число из не нулевых строк или столбцов.

где m – кол-во ненулевых строк, n – кол-во ненулевых столбцов.

Теорема Кронекера-Капелли:

Система уравнений является совместной тогда и только тогда, когда ранг расширенной матрицы АВ равен рангу матрицы А.

Rang AB = Rang A

1. Если ранг матрицы А (Rang A) = числу совместных неизвестных переменных, то система определенная

Если длина вектора =0, то он называется нулевым. Его направление можно считать произвольным.

Вектор «–а» можно считать противоположным вектором для вектора «а», если он имеет такую же длину, но противоположное направление.

Модуль – длина вектора.

Если 2 вектора лежат на 1 прямой или на параллельных прямых, то они называются коллинеарными.

Вектора называются компланарными, если они лежат на 1 плоскости или на параллельных плоскостях.


источники:

http://www.homework.ru/spravochnik/rasshirennaya-matrica/

http://megaobuchalka.ru/14/15435.html