Систему уравнений 7 класс на буквах

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули

    В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.

    Как решать уравнения алгебра 7 класс

    Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.

    Рассмотрим несколько примеров пошагового решения линейных уравнений.

    Пример 1.
    6x + 24 = 0

    Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).

    Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.

    Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).

    Пример 2.
    9 + 16x = 41 + 14x

    Это уравнение более сложное. Здесь важно запомнить несколько моментов:

    • числа без х переносятся в левую часть, а с х — в правую;
    • при переносе знаки меняют.

    Пример 3.
    7(10 — 4x) + 5x = 12 — 3(5x + 2)

    1. Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
    2. Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
    3. Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
    4. Подсчитываем результат с обеих сторон.
    5. Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.

    В рассмотренных уравнениях корень точно определён. Так получается не всегда.

    Пример 4.

    Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.

    В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).

    Как решать систему уравнений алгебра 7 класс

    Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.

    метод подстановки

    Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.

    Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.

    Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).

    В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.

    Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).

    Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).

    Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.

    метод сложения

    Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.

    графический метод

    У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:

    1. Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
    2. Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
    3. Отмечаем на графике соответствующие прямые, подписываем их название.
    4. на месте пересечения получившихся прямых ставим точку — это будет решение.
    5. Точка имеет координаты (1; 5).

    На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.

    Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.

    Как решать дроби 7 класс

    Дроби можно разделить на 2 основных вида:

    Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.

    Для начала рассмотрим решение примеров с десятичными дробями.

    Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.

    Примеры решения обыкновенных дробей.

    • при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
    • при умножении пишем дроби под одной чертой, сокращаем.
    • при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.

    Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).

    Примеры 7 класс как решать

    Теперь закрепим решение дробей на примерах.

    Решение примера, представленного ниже:

    1. Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
    2. Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
    3. Остается от 10,4 отнять 9,3. В итоге вышло 1,1.

    Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.

    Чтобы верно решить следующий пример, нужно:

    • точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
    • Умножить десятичные дроби столбиком, не забыть поставить запятую;
    • деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
    • сложили числа.

    Как решать задачи алгебра 7 класс

    Задачи решаются путем составления уравнений.

    Другие примеры задач с подробными решениями в видео-материалах.

    Как решать функции алгебра 7 клас с

    Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).

    • y(x) = 8x
    • y(x) = −3x — 62
    • y(x) = x−1 + 18

    Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.

    Как решать степени алгебра 7 класс

    Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).

    Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.

    Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.

    При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.

    Рассмотрим несколько примеров со степенями.

    Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.

    Алгебра модули как решать

    Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.

    Перейдем к простым примерам.

    Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.

    Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.

    Другие примеры описаны в видео.

    Об Авторе

    Смотрите также

    Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток

    Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы

    Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки

    2 комментария

    Спасибо большое очень помогли.

    Огромное спасибо!А то учитель неможет нормально тему объяснить

    Открытый урок по математике на тему: «Решение систем уравнений». 7-й класс

    Разделы: Математика

    Класс: 7

    Тип урока: обобщающий урок.

    Вид урока: урок закрепления умений и навыков.

    Оборудование: мультимедийная установка, плакаты: Периодическая система элементов Д. И. Менделеева, система кровообращения человека, солнечная система, физическая система СИ, соединительные союзы русского языка.

    Цели урока:

    1. Содействовать обобщению и систематизации знаний учащихся по теме “Решение систем уравнений”; продолжить закрепление следующих умений: решение систем уравнений графическим способом, способом подстановки, способом сложения (вычитания).
    2. Развитие познавательного интереса, совершенствовать навыки решения систем уравнений;
    3. Связать математику с другими предметами.
    4. Обобщить знания основного программного материала.

    Задачи урока.

    • Воспитательная – формирование нравственных убеждений.
    • Развивающая – развитие внимания и логического мышления, памяти.
    • Учебная – обобщить и повторить знания по применению в реальной жизни темы данного урока.

    Эпиграф к уроку записан на доске “Где есть желание, найдется путь”.

    I. Организационный момент.

    Сегодня на уроке мы должны обобщить весь материал § 15 “Решение систем уравнений”, совершенствовать навыки решения систем уравнений т. е.

    1) способ подстановки;

    2) способ сложения (вычитания);

    3) графическим способом. Один из великих философов сказал: “ ГДЕ ЕСТЬ ЖЕЛАНИЕ, НАЙДЕТСЯ ПУТЬ!”. Мы сегодня на уроке с большим желанием будем решать системы, определяя свой рациональный путь.

    II. Проверка домашнего задания.

    Проверяются решения домашних задач.

    III. Фронтальная работа с классом:

    1. Теоретический опрос: один из учащихся читает контрольный вопрос, располагающийся в учебнике на стр. 184.

    1. Дайте определение линейного уравнения с двумя переменными;

    2. Что называют решением уравнения с двумя переменными?

    3. Что является графиком уравнения ax+by=c, где х, y переменные, а = 0, b = 0.

    4. Если говорят, что задана система уравнений, что это значит?

    5. Что является решением системы линейного уравнения с двумя переменными?

    6. Что, значит, решить систему линейного уравнения с двумя переменными?

    7. Сколько решений может иметь система линейного уравнения с двумя переменными?

    Каждый вопрос сопровождается мультимедийным ответом. Приложение № 1. Слайд № 1, № 2.

    Учитель рассказывает о системах окружающих нас в повседневной жизни. Ученики вспоминают о предметах, где они встречали системы. Это предметы: русский язык (соединительные союзы), биология (система кровообращения человека), физика (система СИ), химия (периодическая система элементов), астрономия (солнечная система).

    Теоретический материал закрепляется тестом, сопровождаемый взаимопроверкой. Приложение № 1. Слайд № 3.

    ТЕСТ.

    1. Какие из перечисленных уравнений являются линейными?
    2. Какая пара чисел является решением уравнения 3х-2у=5?
    3. Какая пара чисел является решением системы:
    4. Какая из перечисленных систем имеет одно решение?
    5. Какая из перечисленных систем имеет бесконечно много решений?
    6. Какая из перечисленных систем не имеет решения?

    Взаимопроверка теста учениками. Каждый вопрос теста выводится на большой мультимедийный экран, решение комментируется.

    Учитель сообщает, что система, не имеющая решений, называется несовместной. 7. В заданиях теста найдите несовместную систему?

    IV. Закрепление изученного материала. Слайд № 4 — № 8. 1) Данную систему решаем

    Графическим способом.

    Построить в координатной плоскости графики уравнений системы.

    Если прямые, являющиеся графиками линейных функций пересекаются, значит, система имеет единственное решение.

    Если прямые параллельны, то система не имеет решений.

    Если прямые совпадают, то система имеет бесконечно много решений.

    Способом подстановки.

    Выражают из какого-нибудь уравнения системы одну переменную через другую;

    Подставляют в другое уравнение системы вместо этой переменной полученное выражение;

    Решают получившиеся уравнение с одной переменной;

    Находят соответствующее значение второй переменной.

    Способом сложения.

    Умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;

    Складывают почленно левые и правые части уравнений системы;

    Решают получившееся уравнение с одной переменной. 11х = -22, х = — 2\

    Находят соответствующее значение второй переменной.

    Записываем ответ. (-2; 3)

    У доски прорешиваются задания графическим способом, где есть несовместная система.

    Способом подстановки решается задача № 1174.

    Способом сложения решается задача № 1180.

    1. Решите систему способом подстановки:

    у = 5-х,
    3х – у = 11.

    2. Решите систему способом сложения:

    3х – 2у = 4,
    5х + 2у = 12.
    2х + 3у = 10,
    – 2х + 5у = 6.

    3. Решите задачу.

    Периметр прямоугольника равен 26см. Периметр прямоугольника равен 16см.

    Его длина на 3 см больше ширины. Его ширина на 4 см меньше длины.

    Найдите стороны прямоугольника. Найдите стороны прямоугольника

    1. Решите систему способом подстановки:

    3х + у = 7,
    9х – 4у = -7.
    х – 3у = 6,
    2у – 5х = -4.

    2. Решите систему способом сложения:

    х – 4у = 9,
    3х + 2у = 13.
    2х + у = 6,
    – 4х + 3у = 8.

    3. Решите задачу.

    Туристическую группу из 42 человек Расселили в двух- и трехместные номера. .

    Всего было занято 16 номеров. Сколько среди них было двухместных и сколько трехместных?

    За покупку канцтоваров на сумму 65 коп. Таня расплатилась пяти- и десятикопееч ными монетами. Всего она отдала 9 монет.

    Сколько среди них было пятикопеечных и сколько десятикопеечных?

    Ответы каждого задания располагаются на карточках определённого цвета, которые нужно сложить на край парты в порядке выполнения задания. Среди предоставленных карточках есть лишние.

    Результатом самостоятельной работы является триколлор флагов РТ и РФ. Учитель комментирует результаты самостоятельной работы.

    белый цвет – благородство,

    синий цвет – верность,

    красный цвет – мужество, любовь.

    зелённый цвет обновление,

    белый цвет — надежда,

    красный цвет — символ борьбы за свободу.

    V. Подведение итогов урока.

    Учащимся выставляются оценки, комментируется домашняя работа.


    источники:

    http://luckclub.ru/kak-reshat-zadaniya-po-algebre-7-klass-uravneniya-primery-drobi-funkcii-stepeni-moduli-kak-nauchitsya-reshat-algebru-7-klass

    http://urok.1sept.ru/articles/410182