Системы иррациональных уравнений с двумя неизвестными

Иррациональные системы уравнений и неравенств с двумя переменными

п.1. Решение иррациональных систем уравнений

п.2. Решение иррациональных систем неравенств

Внимание!
В иррациональных неравенствах возводить одновременно в чётную степень обе стороны можно только при условии, что обе стороны неотрицательны .
При выполнении этого условия знак неравенства сохраняется.
Иначе – знак неравенства не сохраняется, и получаем ложное высказывание.

Возводить одновременно в нечётную степень можно в любом случае.

Решение: \( \left\< \begin < l >\mathrm<-2\leq x \lt \frac<\sqrt<5>-1><2>> & \\ \mathrm <-1\leq y\leq 3>& \end\right. \) прямоугольник на координатной плоскости.

Сторона CD в множество решений не входит.

Системы иррациональных, логарифмических и показательных уравнений

, зав. кафедрой математики ДВГГУ

Системы иррациональных, логарифмических и показательных уравнений

Традиционно в контрольные измерительные материалы для проведения единого государственного экзамена по математике включаются задачи позволяющие проверить умения выпускников решать различные системы уравнений. Как правило, это системы из двух уравнений с двумя переменными. Уравнения, входящие в систему могут быть как алгебраическими, в том числе иррациональными, так и трансцендентными. В рамках этой статьи рассмотрим основные методы решения систем с двумя переменными иррациональных, логарифмических и показательных уравнений.

Прежде чем непосредственно переходить к методам решения систем уравнений напомним основные определения и свойства различных функций, которые могут входить в уравнения системы.

Напомним, что два уравнения с двумя неизвестными образуют систему уравнений, если ставится задача о нахождении таких значений переменных, которые являются решениями каждого из уравнений.

Решением системы двух уравнений с двумя неизвестными называется упорядоченная пара чисел, при подстановке которых в систему вместо соответствующих переменных, получаются верные числовые равенства.

Решить систему уравнений – означает найти все ее решения.

Процесс решения системы уравнений, как и процесс решения уравнения, состоит в последовательном переходе с помощью некоторых преобразований от данной системы к более простой. Обычно пользуются преобразованиями, которые приводят к равносильной системе, в этом случае не требуется проверка найденных решений. Если же были использованы неравносильные преобразования, то обязательна проверка найденных решений.

Иррациональными называют уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

Следует отметить, что

1. Все корни четной степени, входящие в уравнения, являются арифметическими. Другими словами, если подкоренное выражение отрицательно, то корень лишен смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то и значение корня положительно.

2. Все корни нечетной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения. При этом корень отрицателен, если подкоренной выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если подкоренное выражение положительно.

Функции y = и y = являются возрастающими на своей области определения.

При решении систем иррациональных уравнений используются два основных метода: 1) возведение обеих частей уравнений в одну и туже степень; 2) введение новых переменных.

При решении систем иррациональных уравнений первым методом следует помнить, что при возведении обеих частей уравнения, содержащего корни четной степени, в одну и туже степень, получается уравнение, которое является следствием первоначального, в связи с этим, в процессе решения могут появиться посторонние корни. При решении иррациональных уравнений часто используется формула = f(x), применение которой в случае четного n может привести к расширению области определения уравнения. По этим (и по другим) причинам при решении иррациональных уравнений в большинстве случаев необходима проверка найденных решений.

Рассмотрим примеры решения систем иррациональных уравнений различными методами.

Пример 1. Решить систему уравнений

Решение. Чтобы избавиться от иррациональности введем новые переменные. Пусть ……………………… (1),

тогда первоначальная система примет вид: . Решая полученную систему, например методом подстановки находим: . Подставим найденные значения в систему (1), получим: . Возведя обе части первого уравнения в квадрат, второго – в четвертую степень, получим систему: , откуда находим:

Нетрудно убедиться в том, что найденное решение последней системы является решением исходной системы.

Пример 2. Решить систему уравнений

Решение. 1. Из второго уравнения системы имеем: . Подставим в первое уравнение системы вместо правую часть равенства, получим: или ………………………..(2). Введем новую переменную: положим …………………….(3) и подставим в уравнение (2), получим квадратное уравнение от переменной : . Находим корни этого уравнения, например, по теореме Виета: . Корень является посторонним, так как через обозначили арифметический корень. Подставим, в (3), получим . Возведем обе части уравнения в квадрат и выразим : .

Подставим, полученное выражение во второе уравнение первоначальной системы: . Возведем обе части полученного уравнения в квадрат, при этом, чтобы не расширить область допустимых значений полученного уравнения, потребуем, чтобы ………………………………(4).

; .

В силу (4) корень является посторонним.

Найдем значение у при : .

Нетрудно убедиться в том, что пара (0; 4) является решением первоначальной системы уравнений.

Пример 3. Решить систему уравнений:

Решение. 1. Заметим, что правая часть первого уравнения должна быть неотрицательной, т. е. .

2. Возведем обе части первого уравнения в квадрат, получим уравнение: . Тогда система примет вид: . Из первого уравнения системы находим значения . Подставим их во второе уравнение и найдем значения переменной :

.Так как найденные значения не удовлетворяют неравенству , пара (10; 5) не является решением первоначальной системы.

.Эта пара значений удовлетворяет неравенству . Нетрудно убедиться в том, что найденная пара чисел является решением первоначальной системы.

Для успешного решения показательных и логарифмических систем уравнений, вспомним определение и свойства логарифма.

Логарифмом числа b по основанию а, называется показатель степени, в которую нужно возвести число а, чтобы получить число b.

Основные свойства логарифмов:

1) ; 6) ;

2) ; 7) ;

3) ; 8) .

4) = ; 9)

5) = ;

Перечислим основные свойства показательной и логарифмической функций:

1) Область определения функции , где — всё множество действительных чисел; функции , где — множество положительных действительных чисел.

2) Множество значений функции — множество положительных действительных чисел; функции — всё множество действительных чисел.

3) Промежутки монотонности: если обе функции возрастают; если — обе функции убывают.

Замечание. В соответствии со вторым свойством, при решении логарифмических уравнений необходимо либо выяснять область допустимых значений уравнения, либо после решения делать проверку.

Показательным называется трансцендентное уравнение, в котором неизвестное входит в показатель степени некоторых величин. При решении показательных уравнений используются два основных метода:

1) переход от уравнения ……….(1) к уравнению ;

2) введение новых переменных.

Иногда приходится применять искусственные приемы.

Первый метод решения показательных уравнений основан на следующей теореме:

Если , то уравнение равносильно уравнению .

Перечислим основные приемы сведения показательного уравнения к уравнению вида (1).

1. Приведение обеих частей уравнения к одному основанию.

2. Логарифмирование обеих частей уравнения (если они строго положительные) по одинаковому основанию.

Замечание. Логарифмировать можно, вообще говоря, по любому основанию, но обычно логарифмируют по одному из оснований степеней, входящих в уравнение.

3. Разложение левой части уравнения на множители и сведение уравнения к совокупности нескольких уравнений вида (1).

Логарифмическое уравнение – это трансцендентное уравнение, в котором неизвестное входит в аргумент логарифма.

При решении логарифмических уравнений используются два основных метода:

1) переход от уравнения к уравнению вида;

2) введение новых переменных.

Замечание. Так как область определения логарифмической функции только множество положительных действительных чисел, при решении логарифмических уравнений необходимо либо находить область допустимых значений уравнения (ОДЗ), либо после нахождения решений уравнения делать проверку.

Решение простейшего логарифмического уравнения вида

……(1)

основано на следующем важном свойстве логарифмов:

логарифмы двух положительных чисел по одному и тому же положительному отличному от единицы основанию равны тогда и только тогда, когда равны эти числа.

Для уравнения (1) из этого свойства получаем: — единственный корень.

Для уравнения вида …………..(2)

получаем равносильное уравнение .

Пример 4. Найдите значение выражения , если пара является решением системы уравнений .

Решение. 1. Исходя из области определения логарифмической функции получаем требования .

2. Так как уравнения системы содержат логарифмы по двум разным основаниям, перейдем к одному основанию 3: . Воспользовавшись свойствами логарифмов, получим систему: . По определению логарифма имеем: . Из второго уравнения системы получаем значения . Учитывая условие , делаем вывод что — посторонний корень. Из первого уравнения последней системы находим значение при : . Таким образом пара (9; 3) является единственным решением первоначальной системы уравнений.

3. Найдем значение выражения

Пример 5. Найдите наибольшую сумму , если пара является решением системы уравнений .

Решение. Имеем систему показательных уравнений. Особенностью этой системы является то, что неизвестные находятся как в показателе степени, так и в ее основании. Первым шагом при решении таких систем обычно стараются оставить неизвестные только в показателе степени.

В нашем случае это нетрудно сделать, выразив из второго уравнения системы: . Подставим полученное выражение для в первое уравнение системы, получим: . Получили показательное уравнение от одной переменной.

Воспользуемся свойствами степени: . В уравнение входят степени с двумя разными основаниями. Стандартным приемом перехода к одному основанию является деление обеих частей уравнения на одну из степеней с наибольшим показателем. В нашем случае разделим, например, на , получим показательное уравнение: . Стандартным методом решения такого вида показательного уравнения является замена переменной. Пусть (замечаем, что на основании свойств показательной функции, значение новой переменной должно быть положительным), тогда получим уравнение . Находим корни этого уравнения ; . Решаем совокупность двух уравнений: . Получаем: ; .

Из уравнения находим соответствующие значения переменной :

; . Таким образом, пары и являются решениями первоначальной системы.

Найдем суммы вида и выберем из них наибольшую, которая очевидно равна 3.

Рассмотрим несколько примеров «комбинированных» систем уравнений в которые входят уравнения различных видов: иррациональные, логарифмические, показательные.

Пример 6. Решить систему уравнений

Решение. 1. На основании свойств логарифмической функции, имеем ,

2. Преобразуем систему, воспользовавшись свойствами степени и логарифма:

3. Второе логарифмическое уравнение системы содержит одинаковые логарифмы, рациональным методом решения таких уравнений является метод замены переменной. Пусть (1), тогда второе уравнение системы примет вид: . Решим это дробно-рациональное уравнение, учитывая, что . Получим: ; . Воспользуемся равенством (1) и выразим через .

При , , откуда . Подставим это выражение в первое уравнение последней системы: . Решим это уравнение: , так как должен быть положительным, то это посторонний корень; , тогда из равенства , получаем .

При , , откуда . Подставим это выражение в первое уравнение последней системы: . Мы уже нашли, что , следовательно равен нулю может быть только второй сомножитель произведения: . Найдем корни этого уравнения: . Очевидно, что — посторонний корень. Следовательно, еще одним решением системы является пара .

Ответ: ; .

Пример 7. Решить систему .

Решение. 1. Отметим, что система смешанного типа, состоит из логарифмического и иррационального уравнений. Учитывая область определения логарифмической функции, имеем: ; ……………….(1)

Область допустимых значений иррационального уравнения определять не будем, чтобы не тратить время на решение системы неравенств, которая при этом получиться. Но тогда обязательно, когда найдем значения переменных, необходимо сделать проверку.

2. Воспользовавшись свойствами логарифма преобразуем первое уравнение системы:

.

Таким образом, из второго уравнения системы мы выразили одну переменную через другую.

3. Подставим во второе уравнение системы вместо переменной ее выражение через , получим иррациональное уравнение от одной переменной, которое будем решать возведением обеих частей в квадрат:

Найдем корни квадратного уравнения: .

Учитывая, что , найдем значения переменной : .

4. Учитывая (1) делаем вывод, что — постороннее решение. Следовательно, пара чисел (3; 5) не является решением первоначальной системы. Пара чисел (1; 3) удовлетворяет условию (1). Непосредственной проверкой убеждаемся, что эта пара удовлетворяет и второму уравнению системы.

Пример 8. Решить систему

Решение. 1. Рассмотрим второе уравнение системы. Чтобы избавиться от иррациональности, уединим квадратный корень и возведем обе части уравнения в квадрат:

Рассмотрим это уравнение как квадратное, относительно переменной : и найдем его корни: ; .

2. Обе части первого уравнения прологарифмируем по основанию 3, тем самым мы избавимся в уравнении от показательных функций по разным основаниям: .

3. Учитывая найденные выражения для переменной , решим две системы уравнений:

А) и Б) .

А) Подставим выражение для в первое уравнение системы, получим: . Воспользуемся формулой перехода к новому основанию: . Тогда из второго уравнения системы имеем: . Таким образом, пара является решением системы А). Непосредственно проверяем, что эта пара удовлетворяет второму уравнению первоначальной системы.

Б) Подставим выражение для в первое уравнение системы, получим: . Тогда из второго уравнения системы имеем: . Таким образом, пара является решением системы Б). Непосредственно проверяем, что эта пара удовлетворяет второму уравнению первоначальной системы.

Ответ: ;

Задания для самостоятельного решения

1. Решить систему

2. Решить систему

3. Найти , если

4. Решить систему

5. Решить систему

6. Решить систему

Системы иррациональных уравнений с двумя неизвестными

Существуют два равноценных метода решения иррациональных уравнений с квадратными корнями:

  • Метод равносильных переходов (с учетом ОДЗ). При этом для правильной записи области допустимых значений, в общем случае необходимо потребовать неотрицательности всех подкоренных выражений, а также выражений, которым равны корни квадратные (если таковые можно алгебраически выразить из уравнения).
  • Метод перехода к уравнению-следствию (без учета ОДЗ). В этом методе обязательно требуется проверка корней подстановкой.

Честно говоря, в иррациональных уравнениях порой так сложно правильно записать ОДЗ, что даже если Вы будете пробовать это сделать, то корни всё равно лучше проверять подстановкой, особенно если корни представляют из себя целые числа.

Обратите внимание на очень частую ошибку – если Вы решаете уравнение типа:

То при записи ОДЗ необходимо требовать неотрицательность правой части, то есть накладывать условие:

Причем необходимо понимать, что данное условие нужно дополнительно добавлять в ОДЗ даже если к подобному уравнению Вы пришли уже после нескольких преобразований (возведений в квадрат), а не только в случае, когда уравнение изначально выглядело соответствующим образом.

В иррациональных уравнения особо актуально становится следующее замечание: для того чтобы произведение нескольких множителей было равно нолю, необходимо, чтобы хотя бы один их них равнялся нолю, а остальные существовали. Когда множителями являются корни, а не просто скобки как в рациональных уравнениях, то они часто могут и не существовать. Так возникают ошибки.

Если в иррациональном уравнении много корней, то крайне желательно перед возведением этого уравнения в квадрат перенести корни справа налево или наоборот так, чтобы с каждой из сторон получилась именно сумма корней, то есть заведомо положительное выражение. Если же, по каким-то причинам, Вы решили возводить в квадрат разность корней (т.е. выражение чей знак неизвестен), то будьте готовы получить несколько посторонних корней. В этом случае обязательно нужно проверить все корни подстановкой, потому что правильно записать ОДЗ уже скорее всего не получится.

Если в иррациональном уравнении имеется корень в корне, то необходимо будет несколько раз возводить это уравнение в квадрат, при этом главное понимать, что в соответствии с изложенными выше условиями, при каждом таком возведении могут получаться всё новые и новые условия для ОДЗ. В таких уравнениях при возможности лучше проверять корни подстановкой.

При решении иррациональных уравнений часто удобно использовать замену. При этом главное помнить, что после введения замены в некоторое уравнение это уравнение должно:

  • во-первых, стать проще;
  • во-вторых, больше не содержать первоначальной переменной.

Кроме того, важно не забывать выполнять обратную замену, т.е. после нахождения значений для новой переменной (для замены), записывать вместо замены то, чему она равна через первоначальную переменную, приравнивать это выражение к найденным значениям для замены и опять решать уравнения.

При решении систем иррациональных уравнений с двумя неизвестными зачастую достаточно действовать по стандартной схеме. А именно, выразить одну из переменных из одного из уравнений и подставить данное выражение вместо соответствующей переменной в другое уравнение. После чего получится некоторое иррациональное уравнение с одной неизвестной, которое затем следует решить с учетом всех правил решения иррациональных уравнений. Значение первой переменной затем нужно найти используя её выражение через уже найденную переменную.

При решении систем иррациональных уравнений с большим количеством переменных также зачастую достаточно использовать метод подстановки. Также при решении систем иррациональных уравнений часто помогает метод замены переменных. При этом нужно понимать, что после введения замены переменных в систему:

  • во-первых, она опять-таки должна упроститься;
  • во-вторых, новых переменных должно быть столько же сколько и старых;
  • в-третьих, система больше не должна содержать старых переменных;
  • в-четвёртых, нужно не забыть выполнить обратную замену.

Основные свойства степеней

При решении иррациональных уравнений необходимо помнить много свойств степеней и корней. Перечислим ниже основные из них. У математических степеней есть несколько важных свойств:

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень. Ну а основное свойство отрицательной степени записывается следующим образом:

Основные свойства математических корней

Математический корень можно представить в виде обычной степени, а затем пользоваться всеми свойствами степеней приведёнными выше. Для представления математического корня в виде степени используют следующую формулу:

Тем не менее можно отдельно выписать ряд свойств математических корней, которые основываются на свойствах степеней описанных выше:

Для арифметических корней выполняется следующее свойство (которое одновременно можно считать определением корня):

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство (из под корня нечетной степени можно выносить знак «минус»):

Так как значение корня четной степени может быть только неотрицательным, то для таких корней имеется следующее важное свойство:

Итак всегда нужно помнить, что под корнем четной степени может стоять только неотрицательное выражение, и сам корень тоже есть неотрицательное выражение. Кроме того, нужно отметить, что если используется запись со значком математического корня, то показатель степени этого корня может быть только целым числом, причем это число должно быть больше либо равно двум:

Основные свойства квадратного корня

Квадратным корнем называется математический корень второй степени:

Квадратный корень можно извлечь только из неотрицательного числа. При этом значение квадратного корня также всегда неотрицательно:

Для квадратного корня существует два важных свойства, которые важно очень хорошо запомнить и не путать:

Если под корнем стоит несколько множителей, то корень можно извлекать из каждого из них по-отдельности. При этом важно понимать, что каждый из этих множителей по-отдельности (а не только их произведение) должны быть неотрицательными:

Обратите внимание на другой случай использования последнего свойства. Если под корнем квадратным имеется произведение двух отрицательных величин (т.е. по итогу величина положительная, а значит корень существует), то этот корень раскладывается на множители следующим образом:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.


источники:

http://pandia.ru/text/78/063/98374.php

http://educon.by/index.php/materials/math/irracuravnenia