Системы линейных уравнений 10 класс

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №14. Алгебраические системы уравнений.

Перечень вопросов, рассматриваемых в теме:

1) определение алгебраической системы уравнений;

2) методы решений алгебраических систем уравнений;

3) симметрические системы уравнений.

Глоссарий по теме

Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.

Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

Систему уравнений называют однородной, если P(x;y), Q(x;y) — однородные многочлены одной и той же степени, а а и b — действительные числа.

Уравнение P(x;y)= а, где, называют симметрическим, если P(х;y) — симметрический многочлен.

Систему двух уравнений с двумя переменными называют симметрической системой, если оба ее уравнения — симметрические.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

К определению системы уравнений будем подбираться постепенно. Сначала лишь скажем, что его удобно дать, указав два момента: во-первых, вид записи, и, во-вторых, вложенный в эту запись смысл. Остановимся на них по очереди, а затем обобщим рассуждения в определение систем уравнений.

Пусть перед нами несколько каких-нибудь уравнений. Для примера возьмем два уравнения 2·x+y=−3 и x=5. Запишем их одно под другим и объединим слева фигурной скобкой:

Записи подобного вида, представляющие собой несколько расположенных в столбик уравнений и объединенных слева фигурной скобкой, являются записями систем уравнений.

Что же означают такие записи? Они задают множество всех таких решений уравнений системы, которые являются решением каждого уравнения.

Не помешает описать это другими словами. Допустим, какие-то решения первого уравнения являются решениями и всех остальных уравнений системы. Так вот запись системы как раз их и обозначает.

А теперь можно сформулировать определение.

Определение. Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.

Мы будем решать сегодня, в основном, системы уравнений с двумя переменными.

Определение. Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

Рассмотрим методы решения систем уравнений.

Методы решения систем уравнений.

Алгоритм решения системы двух уравнений с двумя переменными x,y методом подстановки:
1. Выразить одну переменную через другую из одного уравнения системы (более простого).
2. Подставить полученное выражение вместо этой переменной в другое уравнение системы.
3. Решить полученное уравнение и найти одну из переменных.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения в уравнение, полученное на первом шаге и найти вторую переменную.
5. Записать ответ в виде пар значений, например, (x;y), которые были найдены соответственно на третьем и четвёртом шаге.

Решить систему уравнений

1. Выразим x через y из второго (более простого) уравнения системы x=5+y.

2. Подставим полученное выражение вместо x в первое уравнение системы (5+y)⋅y=6

3. Решим полученное уравнение:

4. Подставим поочерёдно каждое из найденных значений y в уравнение x=5+y, тогда получим:

5. Пары чисел (−1;−6) и (6;1) — решения системы.

  1. Метод алгебраического сложения

Алгоритм решения системы двух уравнений с двумя переменными x,y методом сложения:
1. Уравнять модули коэффициентов при одном из неизвестных.
2. Сложить или вычесть уравнения.
3. Решить полученное уравнение с одной переменной.
4. Подставить поочерёдно каждый из найденных на третьем шаге корней уравнения в одно из уравнений исходной системы, найти второе неизвестное.

5. Записать ответ в виде пар значений, например, (x;y), которые были найдены.

  1. Метод введения новых переменных

При решении систем двух уравнений с двумя переменными метод введения новых переменных можно применять двумя способами:

1. вводится одна новая переменная и используется только в одном уравнении системы;

2. вводятся две новые переменные и используются одновременно в обоих уравнениях системы.

Решение: введем новые переменные xy= u, x+y=v.

Тогда систему можно переписать в более простом виде:

Решением системы является две пары чисел.

Первая пара чисел:

Вторая пара чисел:

Однако пара (0;0), являющаяся решением первого уравнения системы, не удовлетворяет второму уравнению, т. к. 0²-3·0·0 + 0² = 0 ≠-1. Отсюда х ≠0, и поэтому можем обе части первого уравнения системы разделить на х² ≠ 0 (это не приведет к потере корней). Разделив обе части первого уравнения системы на х², получим

.

получим t² -1 — 2 = 0 t₁ =2, t₂ =-1.

Таким образом, исходная система равносильна совокупности двух систем уравнений:

Первая из этих систем имеет два решения: х₁ =1, у₁ = 2; х₂ = -1; у₂ = -2.

Вторая система несовместна. Отсюда (1;2), (—1;—2) — решения исходной системы.

Решить систему уравнений

Сложим уравнения почленно.

Решим полученное уравнение с одной переменной.

Подставим поочередно каждый из найденных корней уравнения

в одно из уравнений исходной системы, например во второе, и найдём второе неизвестное.

если х=5, то 25+y 2 =29

если х=-5, то 25+y 2 =29

Пары чисел (−5;−2), (−5;2), (5;−2) и (5;2) — решения системы.

Системы линейных уравнений

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 . Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений ( x; y ), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16x + 3y − 4) = 2(12 + 8xy) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде . В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = 27,5

Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

Либо второе уравнение можно записать как x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений , то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

Пример 2. Решить методом подстановки следующую систему уравнений:

Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

Значит решением системы является пара значение (5; 3)

Пример 3. Решить методом подстановки следующую систему уравнений:

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

После выражения переменной x , наша система примет следующий вид:

Теперь подставим первое уравнение во второе и найдем значение y

Подставим y в первое уравнение и найдём x

Значит решением системы является пара значений (3; 4)

Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

Видим, что в данном примере выражать x намного удобнее, чем выражать y .

Пример 4. Решить методом подстановки следующую систему уравнений:

Выразим в первом уравнении x . Тогда система примет вид:

Подставим первое уравнение во второе и найдём y

Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением , в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

Значит решением системы является пара значений (5; −3)

Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

Приведем подобные слагаемые:

В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

Значит решением системы является пара значений (9; 6)

Пример 2. Решить следующую систему уравнений методом сложения:

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

В результате получили простейшее уравнение 5 x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2 x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

Значит решением системы является пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ax + by = c .

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему можно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений методом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе , которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

В результате получили систему
Решением этой системы по-прежнему является пара значений (6; 5)

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе , которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

Тогда получим следующую систему:

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

Пример 4. Решить следующую систему уравнений методом сложения:

Умножим второе уравнение на −1. Тогда система примет следующий вид:

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

Пример 5. Решить следующую систему уравнений методом сложения:

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

Умножим второе уравнение на 3. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

Пример 6. Решить следующую систему уравнений методом сложения:

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

В получившейся системе первое уравнение можно умножить на −5, а второе на 8

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

Пример 7. Решить следующую систему уравнений методом сложения:

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как , а правую часть второго уравнения как , то система примет вид:

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

Первое уравнение умножим на −3, а во втором раскроем скобки:

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

Получается, что система имеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

Получившаяся пара значений (2; −2) будет удовлетворять системе:

Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

Пример 8. Решить следующую систему уравнений методом сложения:

Умножим первое уравнение на 6, а второе на 12

Перепишем то, что осталось:

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Первое уравнение умножим на −1. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1. Решить следующую систему уравнений методом подстановки:

Выразим в третьем уравнении x . Тогда система примет вид:

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Пример 2. Решить систему методом сложения

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как xy = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система содержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

В результате получаем два уравнения, которые образуют систему

Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

Подставим первое уравнение во второе и найдём y

Подставим y в уравнение x = 300 − y и узнаем чему равно x

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1 , 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

Решение

Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как x + y + z = 12 .

Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x = 2y .

Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2y + y + z = 12 , откуда 3y + z = 12 . Это уравнение имеет бесчисленное множество решений.

Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

Если первый сплав имеет массу x , а медь и никель находится нём в отношении 2 : 1 , то можно записать, что в новом сплаве содержится меди от первого куска.

Если второй сплав имеет массу y , а медь и никель находится в нём в отношении 3 : 1 , то можно записать, что в новом сплаве содержится меди от второго куска.

Если третий сплав имеет массу z , а медь и никель находится в отношении 5 : 1 , то можно записать, что в новом сплаве содержится меди от третьего куска.

Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1 . Тогда можно записать, что в полученном сплаве содержится меди.

Сложим , , и приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

Попробуем решить данную систему.

Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

Теперь в главной системе вместо уравнения запишем уравнение, которое мы сейчас получили, а именно уравнение 25y + 10z = 115,2

Подставим второе уравнение в первое:

Умножим первое уравнение на −10 . Тогда система примет вид:

Сложим оба уравнения. Тогда получим простейшее уравнение −5y = −4,8 откуда найдём y равный 0,96 . Значит масса второго сплава составляет 0,96 кг .

Теперь найдём x . Для этого удобно воспользоваться уравнением x = 2y. Значение y уже известно. Осталось только подставить его:

Значит масса первого сплава составляет 1,92 кг .

Теперь найдём z . Для этого удобно воспользоваться уравнением x + y + z = 12 . Значения x и y уже известны. Подставим их куда нужно:

Значит масса третьего сплава составляет 9,12 кг.

Решение систем линейных алгебраических уравнений. 10 класс.

Исследовательская работа по теме «Решение систем линейных алгебраических уравнений». 10 класс. Алгебра и начала анализа.

Скачать:

ВложениеРазмер
nou._reshenie_sistem_lineynykh_algebraicheskikh_uravneniy.doc515 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

Средняя общеобразовательная школа № 81

Сормовского района г. Н. Новгорода

Научное общество учащихся

«Решение систем линейных алгебраических уравнений»

Выполнил: Тихонов Никита,

ученик 10 «а» класса

Капочкина Антонина Николаевна,

1.Системы линейных алгебраических уравнений

2. Решение систем линейных алгебраических уравнений методом Крамера.

2.1. Основные понятия.

2.2 Определители второго порядка и их свойства.

2.3 Определители третьего порядка и их свойства.

2.4. Решение СЛАУ методом Крамера.

3. Матрицы и действия над ними.

3.2. Действия над матрицами.

3.3.Обратная матрица. Матричный метод решения СЛАУ.

4. Решение систем линейных алгебраических уравнений методом Гаусса.

4.1. Совместность СЛАУ.

4.2. Решение СЛАУ методом Гаусса.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений и их систем. Овладевая способами их решения, учащиеся находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т.д.).

Многие теоритические и практические вопросы, приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными.

Способы решения систем линейных уравнений – очень интересная и важная тема в школьном курсе математики, задания из данной темы были представлены на экзамене в 9 классе, а также входят в состав заданий для ЕГЭ.

С решением систем линейных уравнений мы познакомились в седьмом классе. Тогда мы решали системы линейных уравнений двумя способами:

  1. метод подстановки;
  2. метод сложения.

Нужно заметить, что не все методы решения системы линейных алгебраических уравнений рассматриваются в школьном курсе математики. Существуют и другие методы, например, такие, как: метод Крамера , Гаусса (исключение неизвестных), матричный способ.

С этими способами решения систем линейных уравнений мы познакомимся в данной исследовательской работе.

В процессе работы приобретаются навыки, с помощью которых последующее решение систем линейных уравнений станет намного проще и быстрее.

Рассмотреть решение систем линейных алгебраических уравнений методом Крамера, методом Гаусса и матричным методом.

  1. Познакомится с понятием определителя и методами его вычисления.
  2. Рассмотреть метод Крамера решения систем линейных алгебраических уравнений.
  3. Познакомиться с понятием матрицы, элементами матриц, и их элементарными преобразованиями.
  4. Рассмотреть решение систем линейных алгебраических уравнений матричным методом.
  5. Рассмотреть решение систем линейных алгебраических уравнений методом Гаусса.

1.Системы линейных алгебраических уравнений

1.1 Основные понятия и определения

Система m линейных уравнений с n переменными имеет вид:

где a ij, b i (i = 1,2,…,m; j = 1,2,…,n) – произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений.

В более краткой записи с помощью знаков суммирования систему можно записать в виде:

Решением системы (1.1) называется такая совокупность n чисел ( x 1 = k 1, x 2 = k 2 ,…, x n = k n ), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она не имеет решений.

Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения. Например, система уравнений – совместная и определенная, так как имеет единственное решение (10;0); система – несовместная; а система уравнений – совместная и неопределенная, так как имеет более одного, а точнее бесконечное множество решений ( x 1 = c, x 2 = 20-c, где с – любое число).

Две системы уравнений называются равносильными , или эквивалентными , если они имеют одно и то же множество решений. С помощью элементарных преобразований системы уравнений получается система (1.1), равносильная данной.

2. Решение систем линейных алгебраических
уравнений методом Крамера.

2.1. Основные понятия.

Определителем n-го порядка называется число  n , составленное по определенному правилу и записываемое в виде квадратной таблицы

Определитель вычисляется согласно указанному ниже правилу, по заданным числам ( ), которые называются элементами определителя (всего их n 2 ). Индекс i указывает номер строки, j – номер столбца квадратной таблицы (1), на пересечении которых находится элемент . Любую строку или столбец этой таблицы будем называть рядом.

Главной диагональю определителя называется совокупность элементов , , …, определителя (1).

Побочной диагональю определителя называется совокупность элементов , , …, определителя (1).

Минором M ij элемента a ij называется определитель (n–1)–го порядка  n–1 , полученный из определителя n–го порядка  n вычеркиванием i-й строки и jстолбца.

Алгебраическое дополнение A ij элемента a ij определяется равенством

A ij = (–1) i+j  M ij (2)

Значение определителя  n находится по следующему правилу.

Для n = 3 в определителе выбирается разрешающая строка или столбец, относительно которой или которого вычисляются определители 2-го порядка

Здесь в качестве разрешающей была выбрана первая строка определителя (4), однако, без ограничения общности, в качестве разрешающей может быть выбрана любая другая строка либо столбец.

В дальнейшем в качестве разрешающей будем рассматривать первую строку определителя.

Величины A 11 , A 12 , A 13 – алгебраические дополнения, а M 11 , M 12 , M 13 – миноры, соответствующие элементам a 11 , a 12 , a 13 определителя  3 . Эти миноры являются определителями второго порядка, получаемыми из определителя  3 вычеркиванием первой строки и соответствующих столбцов. Например, чтобы найти минор M 13 , следует в определителе  3 вычеркнуть первую строку и третий столбец, а из оставшихся элементов составить определитель второго порядка.

Для произвольного n

где A 1k = (–1) 1+k M 1k , а миноры M 1k , являющиеся определителями (n–1)-го порядка, получаются из  n вычеркиванием первой строки и k-го столбца.

2.2 Определители второго порядка и их свойства.

Определителем второго порядка называется число

Приведем основные свойства определителей второго порядка.

  1. Величина определителя не изменится, если его строки поменять местами соответственными столбцами.
  2. При перестановке двух строк (столбцов) абсолютная величина определителя сохранится, а знак изменится на противоположный.
  3. Если определитель содержит две одинаковые строки (два одинаковых столбца), то его величина равна нулю.
  4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.
  5. Если все элементы какой – либо строки (столбца) определителя равны нулю, то величина определителя равна нулю.
  6. Если к элементам какой – либо строки (столбца) определителя прибавить соответственные элементы другой строки (столбца), умноженные на одно то же число, то величина определителя не изменится.

Пример 1. Вычислить определитель ∆= .

Решение. По формуле (1) находим

Пример 2. Вычислить определитель ∆= .

Решение. Вынесем за знак определителя общие элементов 1-й и 2-й строк, т.е. числа 125 и 4:

Вынося за знак определителя общий множитель элементов 2-ого столбца, равный 4, получим

2.3 Определители третьего порядка и их свойства.

Определителем третьего порядка называется число

Свойства определителей третьего порядка аналогичны свойствам определителей второго порядка.

Пример 1. Вычислить определитель

Решение. По формуле (1) находим

Пример 2. Вычислить определитель

Решение. Вынося за знак определителя общие множители элементов 1, 2 и 3-й строк, получим

∆=3∙6∙2∙ =36∙ — 2 + 3 =36(4(1-5)-2∙0+3(5-

Пример 3. Вычислить определитель

Решение. Вынесем общий множитель элементов 2-й строки за знак определителя:

Вычтем из элементов 3-й строки соответственные элементы 1-й строки:

Так как определитель с двумя равными строками равен нулю, то ∆=7∙0=0.

Для вычисления определителя третьего порядка  3 часто пользуются привилом Сарруса (правило треугольников):

 3 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 – (a 13 a 22 a 31 + a 12 a 21 a 33 + a 23 a 32 a 11 )

Схематическая запись этого правила приведена ниже:

Пример 4. Вычислить определить 4-го порядка.

2.4. Решение СЛАУ методом Крамера.

Пусть задана система линейных алгебраических уравнений в следующем виде:

Пусть определитель матрицы A коэффициентов системы отличен от нуля, т.е. det A  0. Тогда справедливы формулы Крамера для вычисления неизвестных :

где , а являются определителями n-го порядка, которые получаются из путем замены в нем i-го столбца столбцом свободных членов исходной системы.

Пример 1. Решить систему уравнений с помощью формул Крамера:

= 56 – 18 + 20 + 21 = 79.

Последовательно заменяя в  3 первый, второй и третий столбцы столбцом свободных членов, получим

Пример 2. Решить систему уравнений

Найдем определитель системы =5. Так как то по теореме Крамера система имеет единственное решение.

Вычислим определители , , , полученных из матрицы А, заменой соответственно первого, второго и третьего столбцов столбцом свободных членов:

Теперь по формулам Крамера (1.8)

x 1 = ; x 2 = ; x 3 =

т. е. решение системы (4; 2; 1).

Пример 3. Решить систему уравнений

Система уравнений имеет одно решение, так как определитель отличен от нуля.

Остальные определители получим путем замены соответствующего столбца исходного определителя на столбец свободных членов системы уравнений.

Решения находим по формулам:

3. Матрицы и действия над ними.

Матрица размерами m × n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

2 5 2

А = 3 10 7 — матрица. (1)

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n (2)

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n, то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [a ij ] и В = [b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j.

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной матрицы порядка n ,сумма индексов каждого из которых равна n+1, – побочную диагональ.

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0 (4)

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ; (5)

a n1 a n2 … a nn

то

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 . (6)

a 1n a 2n … a nn

Определитель n-го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk (7)

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

  1. При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

  1. Определитель, содержащий две одинаковые строки, равен нулю.
  2. Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.
  3. Определитель, содержащий две пропорциональные строки, равен нулю.
  4. Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

  1. Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

3.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ……………………… (10)

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

  1. А + В = В + А ; (коммутативность)
  2. А + (В + С) = (А + В) + С ; (ассоциативность)
  3. А + О = А .

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

A = ………… , то λA = ……………… (11)

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj, (12)

где i = 1,2, …, m; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (13)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (14)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (13). Перемножив их в обратном порядке, получим:

39 54 69

ВА = 49 68 87 (15)

Сравнив правые части выражений (14) и (15), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

  1. А(ВС) = (АВ)С ; (ассоциативность)
  2. λ(АВ) = (λА)В = А(λВ);
  3. А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

3.3.Обратная матрица. Матричный метод решения СЛАУ.

Пусть дана квадратная матрица

a 11 … a 1n

A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Пример 1. Найти матрицу обратную матрице

1 2 3

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = – –3 1 = –1;

1 –1 2 –1

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

2 1 1 –1

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

2 –1 2 1

А 31 = 2 3 = 5; А 32 = — 1 3 = –10;

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

0 5 5

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

А = 2 3 ; В = 3 4 .

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

Пример1. Решите систему алгебраических линейных уравнений матричным методом.

А= 1 -1 4 ; Х= у ; В= -5

Найдём обратную матрицу А -1 :

∆ = 1 -1 4 = 4*(-1)*1 + 1*1*1 + 1*2*4 – 4*(-1)*1 – 1*1*4 – 1*

4 1 -4 *2*1 = -4+1+8+4-4-2=9-6=3 =0

Следовательно обратная матрица существует. Построим её:

Составим алгебраические дополнения к элементам матрицы А:

А 11 = (-1) 2 -1 2 = -6 А 12 = (-1) 3 1 2 =4 А 13 = (-1) 4 1 -1 = 5

А 21 = (-1) 3 1 1 = -3 А 22 = (-1) 4 1 1 =0 А 23 = (-1) 5 1 1 =3

А 31 = (-1) 4 1 1 =3 А 32 = (-1) 5 1 1 =-1 А 33 = (-1) 6 1 1 =-2

Составим матрицу из алгебраических дополнений:

Транспонируем полученную матрицу:

Умножим полученную матрицу на число, обратное определителю матрицы А т.е на 1/3:

А -1 = 4/3 0/3 -1/3 = 4/3 0 -1/3

5/3 3/3 -2/3 5/3 1 4/3

Х= 4/3 0 -1/3 * -5 = 4/3+2/3 = 2

5/3 1 4/3 -2 5/3-5+4/3 -2

Таким образом, х=1,у= 2, z= -2

Ответ: х=1,у= 2, z= -2

Найдем алгебраические дополнения

Отсюда получаем x = 2, y = 3, z =1.

4 . Решение систем линейных алгебраических
уравнений методом Гаусса.

4.1. Совместность СЛАУ.

Одним из ключевых понятий при решении систем линейных алгебраических уравнений является понятие ранга матрицы. Введем это понятие. Выделим в матрице A размерности m  n k строк и k столбцов, где k – число, меньшее или равное меньшему из чисел m и n. Определитель порядка k, составленный из элементов, стоящих на пересечении выделенных k строк и k столбцов, называется минором или определителем , порожденным матрицей A. Например, для матрицы

при k = 2 определители

будут порожденными данной матрицей.

Рангом матрицы A (обозначается rang A) называется наибольший порядок порожденных ею определителей, отличных от нуля. Если равны нулю все определители порядка k, порожденные данной матрицей, то rang A

Теорема 1. Ранг матрицы не изменится, если

  1. Поменять местами любые два параллельных ряда.
  2. Умножить каждый элемент ряда на один и тот же множитель   0.
  3. Прибавить к элементам ряда соответствующие элементы другого параллельного ряда, умноженные на один и тот же множитель.

Преобразования 1–3 называются элементарными . Две матрицы называются эквивалентными, если одна матрица получается из другой с помощью элементарных преобразований.

Базисным минором матрицы называется всякий отличный от нуля минор, порядок которого равен рангу данной матрицы.

Минор M k+1 порядка k+1, содержащий в себе минор M k порядка k, называется окаймляющим минором M k . Если у матрицы A существует минор M k  0, а все окаймляющие его миноры M k+1 = 0, то rang A = k.

Пример. Найти ранг матрицы

Имеем . Для M 2 окаймляющими будут только два минора:

каждый из которых равен нулю. Поэтому rang A = 2, а указанный минор M 2 может быть принят за базисный.

Теорема 2 (Кронекера-Капелли). Для того, чтобы система m линейных алгебраических уравнений относительно n неизвестных x 1 , x 2 , …, x n

была совместна (имела решение), необходимо и достаточно, чтобы ранг основной матрицы

системы и ранг так называемой расширенной матрицы

системы были равны, т.е. rang A = rang B = r.

Далее, если rang A = rang B и r = n, то система имеет единственное решение; если r

Система называется однородной, если все ее свободные члены b i (i = 1, m) равны нулю. Если хотя бы одно из чисел отлично от нуля, то система называется неоднородной. Для однородной системы уравнений rang A = rang B, поэтому она всегда совместна.

4.2. Решение СЛАУ методом Гаусса.

Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находится все остальные переменные.

Пусть задана система линейных алгебраических уравнений в следующем виде:

(1)

Пусть все хотя бы один из свободных членов системы уравнений отличен от нуля, т.е. система неоднородна. Если основная матрица A системы имеет ранг r = n, то расширенная матрица B этой системы с помощью элементарных преобразований строк и перестановок столбцов всегда может быть приведена к треугольному виду, где на главной диагонали матрицы располагаются единицы, а все элементы ниже главной диагонали равны нулю:

Эта матрица является расширенной матрицей системы

которая эквивалентна исходной системе (т.е. имеет те же самые решения, что и исходная система). Если хотя бы одно из чисел отлично от нуля, то система (2) и исходная система (1) несовместны. Если же , то система (1) совместна, а из системы (2) можно последовательно выразить в явном виде базисные переменные через свободные переменные . Если r = n, то решение этой системы единственно. В дальнейшем будем рассматривать последний случай, т.е. когда r = n.

Пример 1. Решить систему уравнений:

Р е ш е н и е. Расширенная матрица системы имеет вид:

Шаг 1. Так как a 0, то умножая вторую, третью и четвертую строки матрицы на числа (-2), (-3), (-2) и прибавляя полученные соответственно ко второй, третьей, четвертой строкам, исключим переменную x 1 из всех строк, начиная со второй. Поменяем местами вторую и третью строки:

Шаг 2. Умножая вторую строку на (-7/4) и прибавляя полученную строку к четвертой, исключим переменную x 2 из всех строк, начиная с третьей:

Шаг 3. Умножаем третью строку на 13,5/8=27/16, и прибавляя строку к четвертой, исключим из нее переменную x 3 . Получим систему уравнений

откуда, используя обратный ход метода Гаусса, найдем из четвертого уравнения x 4 =-2; из третьего x 3 = = =-1; из второго x 2 = = =2 и из первого уравнения x 1 =6+2 x 4 -3 x 3 — -2 x 2 =6+2(-2)-3(-1)-2·2=1, т.е. решение системы (1; 2; -1; 2).

Пример 2. Методом Гаусса решить систему уравнений:

Р е ш е н и е. Преобразуем расширенную матрицу системы

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво – оно привелось к неверному равенству 0=-1, следовательно, данная система несовместна.

Пример3. С помощью метода последовательных исключений Гаусса решить вопрос о совместности данной системы и в случае совместности решить ее.

Составим расширенную матрицу B и проведем необходиые элементарные преобразования строк:

Последней матрице соответствует система, эквивалентная исходной

Из нее, двигаясь снизу вверх, последовательно находим: x 4 = –1, x 3 = 1, x 2 = 0, x 1 = –2.

Пример 4. . Методом Гаусса решить систему уравнений:

Запишем расширенную матрицу коэффициентов системы уравнений

Произведем элементарные преобразования со строками расширенной матрицы.

Разделим все элементы первой строки расширенной матрицы на 2.

Вычтем из второй строки первую, умноженную на 3.

Вычтем из третьей строки первую, умноженную на 1.

Теперь умножим все элементы второй строки расширенной матрицы на -2/11.

Вычтем из третьей строки вторую, умноженную на ½.

Теперь умножим все элементы третьей строки расширенной матрицы на -11/16

Произведенные выше элементарные преобразования – это прямой ход в метода Гаусса

Теперь нужно провести алгебраические преобразования в обратном порядке:

сначала с элементами третьего столбца, а затем второго столбца расширенной матрицы

Вычтем из второй строки третью, умноженную на (-1/11), а из первой строки третью, умноженную на 1/2

Вычтем из первой строки вторую, умноженную на 3/2

В результате последнего преобразования было получено решение системы уравнений:

Работа над это темой была очень интересной.

− в процессе работы я узнал много нового;

− я научился пользоваться научной литературой, сопоставлять и сравнивать различные точки зрения, выделять главное;

− теперь я знаю, какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, и ещё в своей работе я изучила многие другие теоретические вопросы;

− также весь материал я исследовал не только теоретически, но и практически, приводя некоторые примеры в тексте.

Тема решения систем линейных уравнений предлагается на выпускных экзаменах, поэтому умение их решать очень важно.

Исследовательская работа может использоваться учащимися, как пособие для самостоятельного изучения по теме „Методы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

  1. Кремер Н. Ш. Высшая математика для экономистов: Учебное пособие для ВУЗов.- М.: Издательское объединение «ЮНИТИ», 1997.
  2. Апанасов П. Т., Орлов М. И. Сборник задач по математике: Учебное пособие для техникумов. — М.: Высшая школа, 1987.
  3. Демин И. И. Математика для экономистов: Программа курса и практические задания. – М.: МИЭП, 1997.
  4. Большой энциклопедический словарь «Математика». Ю.В.Прохоров 2000 г.
  5. Справочник по математике для средних учебных заведений. А.Г.Цыпкин Москва «Наука» 1983г.