Системы линейных уравнений за 7 класс

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    «Решение систем линейных уравнений». 7-й класс

    Класс: 7

    Презентация к уроку

    Тип урока: обобщающий урок.

    Вид урока: урок закрепления умений и навыков.

    Оборудование: мультимедийная установка, плакаты: Периодическая система элементов Д.И. Менделеева, система кровообращения человека, солнечная система, физическая система СИ, соединительные союзы русского языка.

    1. Содействовать обобщению и систематизации знаний учащихся по теме “Решение систем уравнений”; продолжить закрепление следующих умений: решение систем уравнений графическим способом, способом подстановки, способом сложения (вычитания).

    2. Развитие познавательного интереса, совершенствовать навыки решения систем уравнений.

    3. Связать математику с другими предметами.

    4. Обобщить знания основного программного материала.

    Воспитательная — формирование нравственных убеждений.

    Развивающая – развитие внимания и логического мышления, памяти.

    Учебная – обобщить и повторить знания по применению в реальной жизни темы данного урока.

    Ход урока

    Эпиграф к уроку: “Считай несчастным тот день и тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию” Я.А. Каменский.

    I. Организационный момент.

    Сегодня на уроке мы должны обобщить весь материал § 16 “Решение систем линейных уравнений”, совершенствовать навыки решения систем уравнений.

    1) способ подстановки; 2) способ сложения (вычитания); 3) графическим способом.

    II. Проверка домашнего задания. Проверяются решения домашних задач.

    III. Фронтальная работа с классом:

    Учитель рассказывает о системах окружающих нас в повседневной жизни. Ученики вспоминают о предметах, где они встречали системы. Это предметы: русский язык (соединительные союзы), биология (система кровообращения человека), физика (система СИ), химия (периодическая система элементов), астрономия (солнечная система). Материал закрепляется слайдами из приложения № 1. Слайд № 3-8.

    Теоретический опрос: один из учащихся читает контрольный вопрос, располагающийся в учебнике на стр. 198.

    1. Дайте определение линейного уравнения с двумя переменными;

    2. Что называют решением уравнения с двумя переменными?

    3.Что является графиком уравнения ax+by=c, где х, y переменные, а 0, b 0.

    4. Если говорят, что задана система уравнений, что это значит?

    5. Что является решением системы линейного уравнения с двумя переменными?

    6. Что, значит, решить систему линейного уравнения с двумя переменными?

    7. Сколько решений может иметь система линейного уравнения с двумя переменными?

    Каждый вопрос сопровождается мультимедийным ответом. Приложение № 1. Слайд № 9,10.

    Теоретический материал закрепляется тестом, сопровождаемый взаимопроверкой. Приложение № 1. Слайд № 11.

    1. Какие из перечисленных уравнений являются линейными?

    2. Какая пара чисел является решением уравнения 3х-2у=5?

    3. Какая пара чисел является решением системы:

    4. Какая из перечисленных систем имеет одно решение?

    5. Какая из перечисленных систем имеет бесконечно много решений?

    6. Какая из перечисленных систем не имеет решения?

    Взаимопроверка теста учениками, решение комментируется.

    Учитель сообщает, что система, не имеющая решений, называется несовместной.

    7. В заданиях теста найдите несовместную систему?

    IV. Закрепление изученного материала. Слайд № 12-14. Данную систему решаем

    Построить в координатной плоскости графики уравнений системы.

    Если прямые, являющиеся графиками линейных функций пересекаются, значит, система имеет единственное решение.

    Если прямые параллельны, то система не имеет решений.

    Если прямые совпадают, то система имеет бесконечно много решений.

    Выражают из какого-нибудь уравнения системы одну переменную через другую;

    Подставляют в другое уравнение системы вместо этой переменной полученное выражение;

    Решают получившиеся уравнение с одной переменной;

    Находят соответствующее значение второй переменной.

    Умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;

    Складывают почленно левые и правые части уравнений системы;

    Решают получившееся уравнение с одной переменной. 11х = -22, х = — 2

    Находят соответствующее значение второй переменной.

    Записываем ответ. (-2; 3)

    У доски прорешиваются задания графическим способом, где есть несовместная система.

    Способом подстановки решается задача № 1174.

    Способом сложения решается задача № 1180.

    2. Решите систему способом сложения:

    3. Решите задачу.

    Периметр прямоугольника равен 26 см. Периметр прямоугольника равен 16 см.

    Его длина на 3 см больше ширины. Его ширина на 4 см меньше длины.

    Найдите стороны прямоугольника. Найдите стороны прямоугольника.

    2. Решите систему способом сложения:

    3. Решите задачу.

    • Туристическую группу из 42 человек Расселили в двух- и трехместные номера. Всего было занято 16 номеров. Сколько среди них было двухместных и сколько трехместных?
    • За покупку канцтоваров на сумму 65 коп. Таня расплатилась пяти- и десятикопеечными монетами. Всего она отдала 9 монет. Сколько среди них было пятикопеечных и сколько десятикопеечных?

    Ответы каждого задания располагаются на карточках определённого цвета, которые нужно сложить на край парты в порядке выполнения задания. Среди предоставленных карточках есть лишние.

    Результатом самостоятельной работы является триколлор флагов РТ и РФ. Учитель комментирует результаты самостоятельной работы. Приложение № 1. Слайд № 16, 17.

    Белый, синий и красный цвета с древних времен на Руси означали:

    • белый цвет — благородство и откровенность;
    • синий цвет — верность, честность, безупречность и целомудрие;
    • красный цвет — мужество, смелость, великодушие и любовь.

    Цвета Государственного флага Республики Татарстан означают:

    • зеленый — зелень весны, возрождение;
    • белый — цвет чистоты;
    • красный — зрелость, энергия, сила, жизнь.

    Автором Государственного флага Республики Татарстан является народный художник Республики Татарстан, лауреат Государственной премии имени Г. Тукая Тавиль Гиниатович Хазиахметов.

    V. Подведение итогов урока.

    Учащимся выставляются оценки, комментируется домашняя работа.

    Как решать систему уравнений

    О чем эта статья:

    8 класс, 9 класс, ЕГЭ/ОГЭ

    Основные понятия

    Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

    Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

    Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

    Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

    Линейное уравнение с двумя переменными

    Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

    Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

    Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

    Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

    Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

    Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

    Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

    Провести прямую через эти две точки и вуаля — график готов.

    Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

    Система двух линейных уравнений с двумя переменными

    Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

    Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

    Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

    Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

    Можно записать систему иначе:

    Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

    Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

    Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

    Метод подстановки

    Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

    Выразить одну переменную через другую из более простого уравнения системы.

    Подставить то, что получилось на место этой переменной в другое уравнение системы.

    Решить полученное уравнение, найти одну из переменных.

    Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

    Записать ответ. Ответ принято записывать в виде пар значений (x; y).

    Потренируемся решать системы линейных уравнений методом подстановки.

    Пример 1

    Решите систему уравнений:

    x − y = 4
    x + 2y = 10

    Выразим x из первого уравнения:

    x − y = 4
    x = 4 + y

    Подставим получившееся выражение во второе уравнение вместо x:

    x + 2y = 10
    4 + y + 2y = 10

    Решим второе уравнение относительно переменной y:

    4 + y + 2y = 10
    4 + 3y = 10
    3y = 10 − 4
    3y = 6
    y = 6 : 3
    y = 2

    Полученное значение подставим в первое уравнение вместо y и решим уравнение:

    x − y = 4
    x − 2 = 4
    x = 4 + 2
    x = 6

    Ответ: (6; 2).

    Пример 2

    Решите систему линейных уравнений:

    x + 5y = 7
    3x = 4 + 2y

    Сначала выразим переменную x из первого уравнения:

    x + 5y = 7
    x = 7 − 5y

    Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

    3x = 4 + 2y
    3 (7 − 5y) = 4 + 2y

    Решим второе линейное уравнение в системе:

    3 (7 − 5y) = 4 + 2y
    21 − 15y = 4 + 2y
    21 − 15y − 2y = 4
    21 − 17y = 4
    17y = 21 − 4
    17y = 17
    y = 17 : 17
    y = 1

    Подставим значение y в первое уравнение и найдем значение x:

    x + 5y = 7
    x + 5 = 7
    x = 7 − 5
    x = 2

    Ответ: (2; 1).

    Пример 3

    Решите систему линейных уравнений:

    x − 2y = 3
    5x + y = 4

    Из первого уравнения выразим x:

    x − 2y = 3
    x = 3 + 2y

    Подставим 3 + 2y во второе уравнение системы и решим его:

    5x + y = 4
    5 (3 + 2y) + y = 4
    15 + 10y + y = 4
    15 + 11y = 4
    11y = 4 − 15
    11y = −11
    y = −11 : 11
    y = −1

    Подставим получившееся значение в первое уравнение и решим его:

    x − 2y = 3
    x − 2 (−1) = 3
    x + 2 = 3
    x = 3 − 2
    x = 1

    Ответ: (1; −1).

    Метод сложения

    Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

    При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

    Складываем почленно левые и правые части уравнений системы.

    Решаем получившееся уравнение с одной переменной.

    Находим соответствующие значения второй переменной.

    Запишем ответ в в виде пар значений (x; y).

    Система линейных уравнений с тремя переменными

    Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

    Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

    Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

    Решение задач

    Разберем примеры решения систем уравнений.

    Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

    5x − 8y = 4x − 9y + 3

    5x − 8y = 4x − 9y + 3

    5x − 8y − 4x + 9y = 3

    Задание 2. Как решать систему уравнений способом подстановки

    Выразить у из первого уравнения:

    Подставить полученное выражение во второе уравнение:

    Найти соответствующие значения у:

    Задание 3. Как решать систему уравнений методом сложения

    1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
    1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
    1. Найти у, подставив найденное значение в любое уравнение:
    1. Ответ: (1; 1), (1; -1).

    Задание 4. Решить систему уравнений

    Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

    Задание 5. Как решить систему уравнений с двумя неизвестными

    При у = -2 первое уравнение не имеет решений, при у = 2 получается:


    источники:

    http://urok.1sept.ru/articles/632326

    http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij