Системы логарифмических уравнений и неравенств 11 класс

Урок 5. Логарифмические неравенства. Системы логарифмических неравенств. Теория.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы рассмотрим метод решения логарифмических неравенств, основанный на свойствах логарифмической функции. Также мы поговорим о видах логарифмических неравенствах и систем логарифмических неравенств.

Данный урок поможет подготовиться к одному из типов задания С3.

Логарифмические уравнения, неравенства и их системы

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

УЛЬЯНОВСКИЙ ИНСТИТУТ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

И ПЕРЕПОДГОТОВКИ РАБОТНИКОВ ОБРАЗОВАНИЯ ПРИ

УЛЬЯНОВСКОМ ГОСУДАРСТВЕННОМ ПЕДАГОГИЧЕСКОМ УНИВЕРСИТЕТЕ ИМЕНИ И.Н.УЛЬЯНОВА

КАФЕДРА ФИЗИКО-МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ

Методы решения логарифмических

уравнений, неравенств и их систем.

УЛЬЯНОВСК 2016 г.

Цели и задачи обучения математике в школе. 3

Цели изучения алгебры и начал анализа

1. Пояснительная записка. 6

2. Программа курса. 8

3. Учебно-тематический план. 9

4. Литература. 10

5. Приложение. 12

5.1. Уравнения и неравенства. Равносильность

уравнений и неравенств. 12

5.2. Логарифмические уравнения и неравенства,

их равносильность. 13

Методы решения логарифмических

Решение систем логарифмических

Решение логарифмических неравенств. 21

Системы логарифмических неравенств. 24

Логарифмические уравнения и неравенства, содержащие переменную под знаком модуля. 25

5.8. Логарифмические уравнения и неравенства

5.9. Тексты контрольных работ. 28

Цели и задачи обучения математике в школе.

В основе характерного для нашего времени нового мировоззрения лежит представление о том, что природу нельзя «покорять», не думая о последствиях своей деятельности, что человеком нельзя управлять как машиной, и силой принуждать его к чему-либо для его же блага. Мир, в котором мы живем , является сложной саморазвивающейся динамической системой, включаю-щей в себя природу и человека. В соответствии с этим в основу школьного преподавания должны быть положены новые ценност-ные ориентиры.

Нельзя думать, что основная цель преподавания состоит только в том, чтобы сообщить ученику как можно больше конкрет-ных знаний, новых понятий, теорем, теорий. На этом пути мы приходим к разбуханию учебных программ и к тому, что значительная часть учащихся, по существу , плохо овладевает школьным материалом. Одна из важнейших целей преподавания состоит в том, чтобы воспитать молодого человека, сформировать его мировоззрение, научить его рациональному мышлению.

На уроках необходимо формировать систему ценностей, с которой молодой человек вступает в мир. Для человека, наряду с материальными ценностями, важны ценности интеллектуальные – знания, умение последовательно рассуждать, анализировать факты, обобщать их. Всему этому школьник учится на уроках математики. Решая задачи, он тренируется в точности и строгости рассуждений, учится искать различные пути выхода из создавшегося положения, привыкает преодолевать трудности. Но чтобы добиться таких результатов, нужно разъяснить ученику цели и задачи изучаемого предмета.

Математика играет важную роль в общей системе образо-вания. Важнейшей задачей обучения является обеспечение некоторого гарантированного уровня математической подго-товки всех школьников, независимо от специальности, которую они изберут в дальнейшем.

Математика, давно став языком науки и техники, в настоя-щее время все шире проникает в повседневную жизнь и обиходный язык, все более внедряется в традиционно далекие от нее области. Компьютеризация общества, внедрение современных информационных технологий требуют математической грамот-ности человека буквально на каждом рабочем месте. Это предполагает и конкретные математические знания, и определен-ный стиль мышления. Роль математической подготовки в общем образовании современного человека ставит следующие цели обучения математике в школе:

— овладение конкретными математическими знаниями, необхо-димыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;

— интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе;

— формирование представлений об идеях и методах матема-тики, о математике как форме описания и методе познания действительности;

— формирование представлений о математике, как части общечеловеческой культуры, понимания значимости математики для общественного прогресса.

Цель изучения курса алгебры и начал анализа в X — XI классах — систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значений общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики. Характерной особенностью курса является системати-зация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры основной школы, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения.

Так, в курсе алгебры и начал анализа в XI классе приводятся в систему и обобщаются имеющиеся у школьников сведения о степенях, дается понятие степени с иррациональным показателем, изучаются степенная, показательная и логарифмическая функции и их свойства, кроме этого, изучаются методы решений неслож-ных иррациональных, показательных и логарифмических уравне-ний, неравенств и их систем.

В своей педагогической практике я столкнулась с тем, что при изучении логарифмов у учащихся сразу появляются затруд-нения не только в решении уравнений и неравенств, но даже само определение логарифма вызывает некоторые трудности у старшеклассников. Не сразу приходит понимание темы «Преобразования логарифмических выражений», особенно много сложностей возникает при решении логарифмических уравнений, неравенств, а тем более их систем. Большинство недочетов и ошибок встречается при проверке корней уравнения или при нахождении ОДЗ (область допустимых значений) уравнений и неравенств, ученики зачастую забывают, что проверка решения или нахождение ОДЗ является неотъемлемой частью решения уравнения или неравенства . Поэтому становится ясным, что заострять внимание школьников на этом аспекте нужно раньше, хотя бы в 8-м классе при изучении дробно-рациональных уравнений, чтобы в старших классах у учеников уже был отработан навык нахождения ОДЗ и проверки корней уравнения.

Конечно же, не все методы решения уравнений вызывают затруднения у учащихся, такие методы, как разложение на множители, введение новой переменной и сведение уравнения к квадратному, практически , несложны для старшеклассников, но метод приведения логарифмов к одному основанию вызывает сложности в восприятии и дальнейшем умении их решать.

Метод, основанный на свойстве монотонности функций, также вызывает затруднения, но это связано еще и с тем, что подобных задач очень мало в учебнике Колмогорова.

Поэтому в своей работе я сделала попытку описать наиболее часто встречающиеся методы решения логарифмических уравнений, неравенств и их систем, показала применение этих методов на примерах, которые наиболее ярко поясняют каждый выбранный метод решения. Мне кажется целесообразным разработка спецкурса по данной теме, который поможет более подробно и основательно изучить одну из самых сложных тем учебной программы по алгебре и началам анализа.

1. Пояснительная записка.

Основная цель данного спецкурса — углубление и расширение знаний учащихся по теме «Логарифмические уравнения и неравенства», повышение уровня их математической культуры, подготовка к выбору учащимися путей дальнейшего образования. Преподавание строится как углубленное изучение вопросов темы, предусмотренных программой базового уровня, так и вопросов, расширяющих кругозор, формирующих мировоззрение, раскрывающих прикладной аспект математики. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих применения высокой логической и операционной культуры, развивающих научно-теоретическое и алгоритмическое мышление учащихся. Уровень предлагаемых и решаемых задач повышенный, существенно превышающий обязательный минимум. Особое место в спецкурсе занимают задачи, требующие применения знаний в незнакомой (нестандартной) ситуации.

Особая установка спецкурса – целенаправленная подготовка учащихся к конкурсным экзаменам в ВУЗы соответствующего профиля. Поэтому преподавание спецкурса направлено на систематизацию знаний и углубление умений учащихся на повышенном уровне и на уровне, предусмотренном программой вступительных экзаменов в ВУЗы .

Основная методическая установка спецкурса – организация самостоятельной деятельности учащихся при ведущей и направляющей роли учителя. Каждый из приведенных вопросов спецкурса предусматривает возможное распределение часов. В случае необходимости, возможно изменение количества часов на изучение некоторых вопросов. Порядок изучения спецкурса определяется в соответствии с тематическим планированием базового курса, целесообразно прохождение данного спецкурса сразу после прохождения соответствующей темы базового курса алгебры и начал анализа 11 класса. Вполне допустимо, чтобы какой-то вопрос темы изучался не подряд, а перемежаясь с другими темами. При необходимости, возможно изменение содержания спецкурса, перераспределение учебного времени, придерживаясь при этом основного принципа: содержание спецкурса в первую очередь должно углублять и дополнять основной базовый курс .

Программа спецкурса состоит из следующих разделов:

— Уравнения и неравенства. Равносильность уравнений

Логарифмические уравнения и неравенства,

— Методы решения логарифмических уравнений.

— Решение систем логарифмических уравнений.

— Решение логарифмических неравенств.

— Системы логарифмических неравенств.

— Логарифмические уравнения и неравенства, содержа-

щие переменную под знаком модуля.

— Уравнения и неравенства с параметром.

По сравнению с государственной базовой программой в спецкурс включены такие вопросы, как равносильность логарифмических уравнений и неравенств, подробно рассматривается вопрос потери корня уравнения и приобретения постороннего корня. Также включены вопросы решения уравнений с модулем и с параметром, которые в школьном учебнике « Алгебра и начала анализа» под редакцией Колмогорова А.Н. просто отсутствуют.

Данные вопросы включены в спецкурс по той причине, что уравнения и неравенства с модулем и с параметром часто встречаются на вступительных экзаменах в ВУЗы , и абитуриенты должны уметь их решать, чтобы составить достойную конкурен-цию на вступительных испытаниях.

2. Программа курса.

1. Логарифмические уравнения и неравенства, их равносильность.

Определение уравнения, неравенства, корня уравнения. Равносильность уравнений и неравенств. Определения логарифмического уравнения и неравенства. Равносильность логарифмических уравнений и неравенств. Посторонний корень, потеря корня. Формулы логарифмирования, потенцирования.

Методы решения логарифмических уравнений и их систем.

Метод потенцирования. Метод введения новой переменной. Метод логарифмирования. Функционально-графический метод. Метод введения вспомогательной переменной. Метод алгебраи-ческого сложения.

Методы решения логарифмических неравенств и их систем.

Основные теоремы. Переход от неравенства к равносильной системе неравенств. Метод введения вспомогательной переменной. Переход от старого основания логарифма к новому основанию. Метод интервалов.

Логарифмические уравнения и неравенства с модулем.

Основные приемы решения уравнений и неравенств с модулем.

Уравнения и неравенства с параметром.

Основные приемы решения уравнений и неравенств с параметром.

Обобщение и систематизация знаний по теме «Логарифмические уравнения, неравенства и их системы».

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению \(f(x)=g(x)\) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида \(\log_a f(x)=\log_a g(x)\)

Неравенства \( \begin f(x)\gt 0\\ g(x)\gt 0 \end \) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для \(x\) в явном виде;
2) решить уравнение \(f(x)=g(x)\);
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения \(f(x)\) и \(g(x)\) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение \(f(x)=g(x)\);
2) провести подстановку: полученные корни подставить в выражения для \(f(x)\) и \(g(x)\), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение \(\lg(2x+3)+\lg(x+4)=\lg(1-2x)\)
Найдем ОДЗ в явном виде:
\( \begin 2x+3\gt 0\\ x+4\gt 0\\ 1-2x\gt 0 \end \Rightarrow \begin x\gt-\frac32\\ x\gt-4\\ x\lt\frac12 \end \Rightarrow -\frac32\lt x\lt\frac12\Rightarrow x\in\left(-\frac32;\frac12\right) \)
Решаем уравнение:
\(\lg\left((2x+3)(x+4)\right)=\lg(1-2x)\)
\((2x+3)(x+4)=1-2x\)
\(2x^2+11x+12-1+2x=0\)
\(2x^2+13x+11=0\)
\((2x+11)(x+1)=0\)
\( \left[ \begin x_1=-5,5\\ x_2=-1 \end \right. \)
Корень \(x_1=-5,5\notin \left(-\frac32;\frac12\right),\) т.е. не подходит.
Корень \(x_2=-1\in \left(-\frac32;\frac12\right)\) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида \(\log_ f(x)=\log_ g(x)\)

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение \(\log_(x^2-4)=\log_(2-x)\)
Найдем ОДЗ в явном виде:
\( \begin x^2-4\gt 0\\ 2-x\gt 0\\ x+5\gt 0\\ x+5\ne 1 \end \Rightarrow \begin x\lt -2\cup x\gt 2\\ x\lt 2\\ x\gt -5\\ x\ne -4 \end \Rightarrow \begin -5\lt x\lt -2\\ x\ne -4 \end \Rightarrow x\in (-5;-4)\cup(-4;-2) \)
Решаем уравнение:
\(x^2-4=2-x\)
\(x^2+x-6=0\)
\((x+3)(x-2)=0\)
\( \left[ \begin x_1=-3\\ x_2=2 — \ \text <не подходит>\end \right. \)
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение \(\log_<2>(x+1)=\log_<4>(x+3)\)
Основания \(2\ne 4\), и нельзя сразу написать \(x+1=x+3\).
Нужно привести к одному основанию, преобразовав левую часть:
\(\log_2(x+1)=\log_<2^2>(x+1)^2=\log_4(x+1)^2\)
Тогда исходное уравнение примет вид: \(\log_4(x+1)^2=\log_4(x+3)\)
И теперь: \((x+1)^2=x+3\)
\(x^2+x-2=0\)
\((x+2)(x-1)=0\)
\( \left[ \begin x_1=-2\\ x_2=1 \end \right. \)
Что касается ОДЗ, то её нужно искать для исходного уравнения:
\( \begin x+1\gt 0\\ x+3\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt -3 \end \Rightarrow x\gt -1 \)
Корень \(x_1=-2\lt -1\) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) \( \log_2(x+1)-\log_2(x-1)=1 \)
ОДЗ: \( \begin x+1\gt 0\\ x-1\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt 1 \end \Rightarrow x\gt 1 \)
\(\log_2\left((x+1)(x-1)\right)=\log_22\)
\(x^2-1=2\Rightarrow x^2 =3\)
\( \left[ \begin x_1=-\sqrt<3>\lt 2 — \text<не подходит>\\ x_2=\sqrt <3>\end \right. \)
Ответ: \(\sqrt<3>\)

б) \( 2\log_5(x-1)=\log_5(1,5x+1) \)
ОДЗ: \( \begin x-1\gt 0\\ 1,5x+1\gt 0 \end \Rightarrow \begin x\gt 1\\ x\gt-\frac23 \end \Rightarrow x\gt 1 \)
Преобразуем: \(2\log_5(x-1)=\log_5(x-1)^2\)
Получаем: \(\log_5(x-1)^2=\log_5(1,5x+1)\)
\((x-1)^2=1,5x+1\)
\(x^2-2x+1-1,5x-1=0\Rightarrow x^2-3,5x=0\Rightarrow x(x-3,5)=0\)
\( \left[ \begin x_1=0\lt 1 — \text<не подходит>\\ x_2=3,5 \end \right. \)
Ответ: 3,5

в) \( \log_3(3-x)+\log_3(4-x)=1+2\log_3 2 \)
ОДЗ: \( \begin 3-x\gt 0\\ 4-x\gt 0 \end \Rightarrow \begin x\lt 3\\ x\lt 4 \end \Rightarrow x\lt 3 \)
Преобразуем: \(1+2\log_3 2=\log_3 3+\log_3 2^2=\log_3(3\cdot 4)=\log_3 12\)
Получаем: \(\log_3\left((3-x)(4-x)\right)=\log_3 12\)
\((3-x)(4-x)=12\Rightarrow 12-7x+x^2=12\Rightarrow x(x-7)=0\)
\( \left[ \begin x_1=0\\ x_2=7\gt 3 — \text <не подходит>\end \right. \)
Ответ: 0

г) \( \log_2^2x+\log_2 x^2+1=0 \)
ОДЗ: \(x\gt 0\)
\(\log_2x^2=2\log_2x\)
Получаем: \(\log_2^2x+2\log_2x+1=0\)
Замена: \(t=\log_2 x\)
\(t^2+2t+1=0\Rightarrow(t+1)^2=0\Rightarrow t=-1\)
Возвращаемся к исходной переменной: \(\log_2x=-1\)
\(x=2^<-1>=\frac12\)
Ответ: \(\frac12\)

д) \( x^<\lg x>=10 \)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg ⁡x\). Тогда \(x=10^t\)
Подставляем:
\((10^t)^t=10\Rightarrow 10^=10^1\Rightarrow t^2=1\Rightarrow t=\pm 1\)
Возвращаемся к исходной переменной:
\( \left[ \begin \lg x=-1\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-1>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,1\\ x_2=10 \end \right. \)
Оба корня подходят.
Ответ:

e) \( \sqrt\cdot \log_5(x+3)=0 \)
ОДЗ: \( \begin x\geq 0\\ x+3\gt 0 \end \Rightarrow \begin x\geq 0\\ x\gt -3 \end \Rightarrow x\geq 0 \)
\( \left[ \begin \sqrt=0\\ \log_5(x+3)=0 \end \right. \Rightarrow \left[ \begin x=0\\ x+3=5^0=1 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=-2\lt 0 — \text <не подходит>\end \right. \)
Ответ: 0

ж) \( \log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(x+1) \)
ОДЗ: \( \begin x\gt 0\\ x+1\gt 0\\ 5x-2\gt 0\\ 5x-2\ne 1 \end \Rightarrow \begin x\gt 0\\ x\gt -1\\ x\gt\frac25\\ x\ne\frac35 \end \Rightarrow \begin x\gt\frac25\\ x\ne\frac35 \end \)
Преобразуем: \(\log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(2x^2)\)
Подставляем: \(\log_<5x-2>(2x^2)=\log_<5x-2>(x+1)\)
\( 2x^2=x+1\Rightarrow 2x^2-x-1=0\Rightarrow (2x+1)(x-1)=0 \Rightarrow \left[ \begin x_1=-\frac12 — \text<не подходит>\\ x_2=1 \end \right. \)
Ответ: 1

Пример 2*. Решите уравнения:
a) \( \log_4\log_2\log_3(2x-1)=\frac12 \)
ОДЗ: \( \begin 2x-1\gt 0\\ \log_3(2x-1)\gt 0\\ \log_2\log_3(2x-1)\gt 0 \end \Rightarrow \begin x\gt\frac12\\ 2x-1\gt 3^0\\ \log_3(2x-1)\gt 2^0 \end \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ 2x-1\gt 3^1 \end \Rightarrow \)
\( \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ x\gt 2 \end \Rightarrow x\gt 2 \)
Решаем:
\(\log_2\log_3(2x-1)=4^<1/2>=2\)
\(\log_3(2x-1)=2^2=4\)
\(2x-1=3^4=81\)
\(2x=82\)
\(x=41\)
Ответ: 41

б) \( \log_2(9-2^x)=25^<\log_5\sqrt<3-x>> \)
ОДЗ: \( \begin 9-2x\gt 0\\ 3-x\gt 0 \end \Rightarrow \begin 2^x\lt 9\\ x\lt 3 \end \Rightarrow \begin x\lt\log_2 9\\ x\lt 3 \end \Rightarrow x\lt 3 \)
Преобразуем: \(25^<\log_5\sqrt<3-x>>=25^<\log_<5^2>(\sqrt<3-x>)^2>=25^<\log_<25>(3-x)>=3-x\)
Подставляем: \(\log_2(9-2^x)=3-x\)
\(9-2^x=2^<3-x>\)
\(9-2^x-\frac<8><2^x>=0\)
Замена: \(t=2^x\gt 0\)
\( 9-t-\frac8t=0\Rightarrow \frac<-t^2+9t-8>=0\Rightarrow \begin t^2-9t+8\gt 0\\ t\ne 0 \end \Rightarrow \begin (t-1)(t-8)=0\\ t\ne 0 \end \Rightarrow \left[ \begin t_1=1\\ t_2=8 \end \right. \)
Возвращаемся к исходной переменной:
\( \left[ \begin 2^x=1\\ 2^x=8 \end \right. \Rightarrow \left[ \begin 2^x=2^0\\ 2^x=2^3 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=3 \end \right. \)
По ОДЗ \(x\lt 3\), второй корень не подходит.
Ответ: 0

в) \( \lg\sqrt+\lg\sqrt<2x-3>+1=\lg 30 \)
ОДЗ: \( \begin x-5\gt 0\\ 2x-3\gt 0 \end \Rightarrow \begin x\gt 5\\ x\gt\frac32 \end \Rightarrow x\gt 5 \)
Преобразуем: \(\lg 30-1=\lg 30-\lg 10=\lg\frac<30><10>=\lg 3\)
Подставляем: \(\lg\sqrt+\lg\sqrt<2x-3>=\lg 3\)
\(\frac12\lg(x-5)+\frac12\lg(2x-3)=\lg 3\ |\cdot 2\)
\(\lg(x-4)+\lg(2x-3)=2\lg 3\)
\(\lg\left((x-5)(2x-3)\right)=\lg 3^2\)
\((x-5)(2x-3)=9\Rightarrow 2x^2-13x+15-9=0 \Rightarrow 2x^2-13x+6=0\)
\( (2x-1)(x-6)=0\Rightarrow \left[ \begin x_1=\frac12\lt 5 — \ \text<не подходит>\\ x_2=6 \end \right. \)
Ответ: 6

г) \( \frac<1><\lg x>+\frac<1><\lg 10x>+\frac<3><\lg 100x>=0 \)
ОДЗ: \( \begin x\gt 0\\ \lg x\ne 0\\ \lg 10x\ne 0\\ \lg 100x\ne 0 \end \Rightarrow \begin x\gt 0\\ x\ne 1\\ 10x\ne 1\\ 100x\ne 1 \end \Rightarrow \begin x\gt 0\\ x\ne\left\<\frac<1><100>;\frac<1><10>;1\right\> \end \)
Преобразуем: \(\lg 10x=\lg 10+\lg x=1+\lg 10\)
\(\lg 100x=\lg 100+\lg x=2+\lg x\)
Подставляем: \(\frac<1><\lg x>+\frac<1><1+\lg x>+\frac<3><2+\lg x>=0\)
Замена: \(t=\lg x\)
\begin \frac1t+\frac<1><1+t>+\frac<3><2+t>=0\Rightarrow \frac1t+\frac<1><1+t>=-\frac<3><2+t>\Rightarrow \frac<1+t+t>=-\frac<3><2+t>\Rightarrow (1+2t)(2+t)=(1+t)\\ 2_5t+2t^2=-3t-3t^2\Rightarrow 5t^2+8t+2=0\\ D=8^2-4\cdot 5\cdot 2=24,\ \ t=\frac<-8\pm 2\sqrt<6>><10>=\frac<-4\pm \sqrt<6>> <5>\end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=\frac<-4- \sqrt<6>><5>\\ \lg x=\frac<-4+ \sqrt<6>> <5>\end \right. \Rightarrow \left[ \begin x=10\frac<-4- \sqrt<6>><5>\\ x=10\frac<-4+ \sqrt<6>> <5>\end \right. $$ Оба корня подходят.
Ответ: \(\left\<10\frac<-4\pm\sqrt<6>><5>\right\>\)

e) \( x^<\frac<\lg x+7><4>>=10^ <\lg x+1>\)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg x.\) Тогда \(x=10^t\)
Подставляем: \begin (10^t)^<\frac<4>>=10^\\ \frac<4>=t+1\Rightarrow t(t+7)=4(t+1)\Rightarrow t^2+7t-4t-4=0\\ t^2+3t-4=0\Rightarrow (t+4)(t-1)=0\Rightarrow \left[ \begin t_1=-4\\ t_2=1 \end \right. \end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=-4\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-4>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,0001\\ x_2=10 \end \right. $$ Оба корня подходят.
Ответ: \(\left\<0,0001;\ 10\right\>\)

ж) \( 4^<\log_3(1-x)>=(2x^2+2x+5)^ <\log_3 2>\)
ОДЗ: \( \begin 1-x\gt 0\\ 2x^2+2x+5\gt 0 \end \Rightarrow \begin x\lt 1\\ D\lt 0,\ x\in\mathbb \end \Rightarrow x\lt 1 \)
По условию: \begin \log_3(1-x)=\log_4\left((2x^2+2x+5)^<\log_32>\right)\\ \log_3(1-x)=\log_32\cdot\log_4(2x^2+2x+5) \end Перейдем к другому основанию: $$ \frac<\lg(1-x)><\lg 3>=\frac<\lg 2><\lg 3>\cdot\frac<\lg(2x^2+2x+5)><\lg 4>\ |\cdot\ \lg 3 $$ \(\frac<\lg 2><\lg 4>=\frac<\lg 2><\lg 2^2>=\frac<\lg 2><2\lg 2>=\frac12\) \begin \lg(1-x)=\frac12\cdot\lg(2x^2+2x+5)\ |\cdot 2\\ 2\lg(1-x)=\lg(2x^2+2x+5)\\ \lg(1-x)^2=\lg(2x^2+2x+5)\\ (1-x)^2=2x^2+2x+5\\ 1-2x+x^2=2x^2+2x+5\\ x^2+4x+4=0\\ (x+2)^2=0\\ x=-2 \end Ответ: -2

Пример 3. Решите систему уравнений:
a) \( \begin \lg x+\lg y=\lg 2\\ x^2+y^2=5 \end \)
ОДЗ: \( \begin x\gt 0\\ y\gt 0 \end \)
Из первого уравнения: \(\lg(xy)=\lg 2\Rightarrow xy=2\)
Получаем: \( \begin xy=2\\ x^2+y^2=5 \end \Rightarrow \begin y=\frac2x\\ x^2+\left(\frac2x\right)^2-5=0 \end \)
Решаем биквадратное уравнение: \begin x^2+\frac<4>-5=0\Rightarrow\frac=0\Rightarrow \begin x^4-5x^2+4=0\\ x\ne 0 \end \\ (x^2-4)(x^2-1)=0\Rightarrow \left[ \begin x^2=4\\ x^2=1 \end \right. \Rightarrow \left[ \begin x=\pm 2\\ x=\pm 1 \end \right. \end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: \( \left[ \begin \begin x=1\\ y=\frac2x=2 \end \\ \begin x=2\\ y=\frac22=1 \end \end \right. \)
Ответ: \(\left\<(1;2),(2,1)\right\>\)

б) \( \begin x^=27\\ x^<2y-5>=\frac13 \end \)
ОДЗ: \(x\gt 0,\ x\ne 1\)
Логарифмируем: \( \begin y+1=\log_x27=\log_x3^3=3\log_x3\\ 2y-5=\log_x\frac13=\log_x3^<-1>=-\log_x3 \end \)
Замена: \(z=\log_x3\) \begin \begin y+1=3z\\ 2y-5=-z\ |\cdot 3 \end \Rightarrow \begin y+1=3z\\ 6y-15=-3z \end \Rightarrow \begin 7y-14=0\\ z=5-2y \end \Rightarrow \begin y=2\\ z=1 \end \end Возвращаемся к исходной переменной: $$ \begin y=2\\ \log_x3=1 \end \Rightarrow \begin x^1=3\\ y=2 \end \Rightarrow \begin x=3\\ y=2 \end $$
Ответ: (3;2)

в*) \( \begin 3(\log_y x-\log_x y)=8\\ xy=16 \end \)
ОДЗ: \( \begin x\gt 0,\ x\ne 1\\ y\gt 0,\ y\ne 1 \end \)
Сделаем замену \(t=\log_x y\). Тогда \(\log_y x=\frac<1><\log_x y>=\frac1t\)
Подставим в первое уравнение и решим его: \begin 3\left(\frac1t-t\right)=8\Rightarrow\frac<1-t^2>=\frac83\Rightarrow \begin 3(1-t^2)=8t\\ t\ne 0 \end\\ 3t^2+8t-3=0\Rightarrow (3t-1)(t+3)=0\Rightarrow \left[ \begin t_1=\frac13\\ t_2=-3 \end \right. \end Прологарифмируем второе уравнение по \(x\): $$ \log_x(xy)=\log_x16\Rightarrow 1+\log_x y=\log_x16\Rightarrow 1+t=\log_x 16 $$ Получаем: \begin \left[ \begin \begin t=\frac13\\ \log_x16=1+t=\frac43 \end \\ \begin t=-3\\ \log_x16=1+t=-2 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x^<\frac43>=16 \end \\ \begin t=-3\\ x^<-2>=16 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x=(2^4)^<\frac34>=2^3=8 \end \\ \begin t=-3\\ x=(16)^<-\frac12>=\frac14 \end \end \right. \end Возвращаемся к исходной переменной: \begin \left[ \begin \begin x=8\\ \log_x y=\frac13 \end \\ \begin x=\frac14\\ \log_x y=-3 \end \end \right. \Rightarrow \left[ \begin \begin x=8\\ y=8^<\frac13>=2 \end \\ \begin x=\frac14\\ y=\left(\frac14\right)^<-3>=64 \end \end \right. \end
Ответ: \(\left\<(8;2),\left(\frac14; 64\right)\right\>\)

г*) \( \begin (x+y)\cdot 3^=\frac<5><27>\\ 3\log_5(x+y)=x-y \end \)
ОДЗ: \(x+y\gt 0\)
Прологарифмируем первое уравнение по 3: \begin \log_3\left((x+y)\cdot 3^\right)=\log_3\frac<5><27>\\ \log_3(x+y)+(y-x)=\log_3\frac<5><27>\\ \log_3(x+y)-\log_3\frac<5><27>=x-y \end Получаем:\(x-y=3\log_5(x+y)=\log_3(x+y)-\log_3\frac<5><27>\)
Решим последнее уравнение относительно \(t=x+y\) \begin 3\log_5 t=\log_3 t-\log_3\frac<5><27>\\ 3\cdot\frac<\log_3t><\log_35>-\log_3t=-\log_3\frac<5><27>\\ \log_3t\cdot\left(\frac<3><\log_35>-1\right)=-\log_3\frac<5><27>\\ \log_3t=-\frac<\log_3\frac<5><27>><\frac<3><\log_35>-1>=-\frac<(\log_35-3)\log_35><3-\log_35>=\log_35\\ t=5 \end Тогда: \(x-y=3\log_5t=3\log_55=3\)
Получаем систему линейных уравнений: \begin \begin x+y=5\\ x-y=3 \end \Rightarrow \begin 2x=5+3\\ 2y=5-3 \end \Rightarrow \begin x=4\\ y=1 \end \end Требование ОДЗ \(x+y=4+1\gt 0\) выполняется.
Ответ: (4;1)


источники:

http://infourok.ru/logarifmicheskie-uravneniya-neravenstva-i-ih-sistemy-4036104.html

http://reshator.com/sprav/algebra/10-11-klass/logarifmicheskie-uravneniya-i-sistemy/