Системы нелинейных уравнений 10 класс

Нелинейные системы уравнений
методическая разработка по алгебре (10 класс) по теме

Решение систем нелинейных уравнений — раздел алгебры считается одним из трудных разделов, так как нет единых способов решения систем алгебраических уравнений, особенно, если речь идет о нелинейных системах уравнений. Так как школьники испытывают затруднения при выполнении такого типа заданий, то возникла идея составить рекомендации для старшеклассников по теме «Нелинейные системы уравнений».

Скачать:

ВложениеРазмер
nelineynye_sistemy_uravneniy_remennikova_g.m..doc479 КБ

Предварительный просмотр:

Материал подготовила: Ременникова Галина Михайловна,

учитель математики высшей категории МКОУ «Любинская СОШ №3»

р. п. Любинский, 2012

Решение систем нелинейных уравнений — раздел алгебры считается одним из трудных разделов, так как нет единых способов решения систем алгебраических уравнений, особенно, если речь идет о нелинейных системах уравнений. Так как школьники испытывают затруднения при выполнении такого типа заданий, то возникла идея составить рекомендации для старшеклассников по теме «Нелинейные системы уравнений».

Рассмотрим нелинейную систему уравнений

Где (,, … , ) — рациональные функции (функция (, … , ) называется рациональной, если над переменными , , …, производится лишь операции сложения, вычитания, умножения и деления; всякую рациональную функцию можно после приведения к общему знаменателю представить в виде отношения двух многочленов). Число неизвестных k может не совпадать с числом уравнений n .

Упорядоченная система из K чисел (,, … ,) называется решением системы (I ), если при подстановке в уравнения системы вместо переменных соответствующих чисел все уравнения системы превращается в верные равенства.

Решить систему уравнений – значит найти множество всех ее решений.

В этом задании мы рассматриваем системы действительными коэффициентами; параметры, входящие в уравнения, также принимают действительные значения и ищутся лишь действительные решения.

Не всякая нелинейная система уравнений имеет решения. Например, система уравнений

не имеет решений.

Система уравнений, не имеющая решений, называется несовместной.

В 7-м классе мы знакомились с линейными системами (все неизвестные входят в первой степени). В этом случае можно указать общий метод решения линейных систем. Например, метод Гаусса последовательного исключения переменных.

Если же хотя бы одно из неизвестных входит в систему в степени, отличной от 1, то система уже будет нелинейной.

Для решения нелинейных систем уравнений не существует общего метода. Познакомимся на конкретных примерах с некоторыми приёмами, которые часто используются при решении таких систем.

1. Переход к равносильной (более простой) системе

Как правило, при решении систем уравнений мы производим различные преобразования уравнений, входящих в систему; упрощаем выражения, стоящие в левых и правых частях уравнения; переносим слагаемые из одной части в другую; возводим в степень обе части уравнения; складываем соответственные части двух уравнений и т.д. В результате этих преобразований мы последовательно заменяем исходную систему другими системами, всё более простыми, пока не получим систему, которую умеем решать.

Однако на этом пути нас подстерегают две опасности потеря решений и приобретение лишних «решений». Заметим, что появление лишних «решений», в принципе, не опасно, ибо проверкой всегда можно установить, какие решения действительно удовлетворяют исходной системе, а какие являются посторонними и должны быть отброшены. Другое дело – потеря решений. Выше мы говорили, что решить систему уравнений – это найти множество всех ее решений, следовательно, потеря решений недоступна.

Поэтому наибольший интерес представляют те преобразования, которые не приводят ни к потере решений, ни к приобретению лишних «решений». Система, возникающая в результате таких преобразований, называется равносильной исходной системе (другими словами, две системы уравнений называются равносильными, если любое решение первой системы является также решением второй и, наоборот, любое решение второй системы является также решением первой).

Преобразования, приводящие к равносильной системе, будем называть равносильными преобразованиями.

Рассмотрим задачу I . Решить систему уравнений

Решение. Сложим первое и третье уравнения системы (2)

Умножим первое уравнение на 2 и сложим со вторым

Если теперь в системе (2) заменить первое и третье уравнение на получение, то возникнет новая система, равносильная исходной

Умножим далее первое уравнение системы (3) на 2 и сложим со вторым; получим уравнение

Система (3) равносильна системе

Из первого уравнения системы (4) находим два значения x:

Подставляя значения в последние два уравнения системы (4), получим для определения y и z систему

которая имеет решения z=-1, y=-3; z=-1,y=1. Итак, при, мы нашли два решения системы (4), а значит, в силу равносильности, и исходной системы (2): (2,-3,-1), (2,1,-1).

Аналогично при получим еще четыре решения системы (2): (3,2,-3);(3,2,1);(3,-4,-3);(3,-4,+1).

Основные равносильные преобразования, которые часто применяются при решении нелинейных систем и наиболее характерные случаи, когда нарушается равносильность преобразований.

К равносильным преобразованиям относятся:

1) прибавление к обеим частям некоторого уравнения системы выражения, которое не изменяет область допустимых значений всех переменных, входящих в систему (областью допустимых значений переменных называется совокупность всех значений переменных, при которых и левые и правые части всех уравнений, входящих в систему, имеют смысл):

2) приведение подобных членов, если при этом не меняется область допустимых значений переменных:

3) умножение обеих частей уравнения на некоторое выражение, которое не изменяет область допустимых значений переменных и не обращается в нуль в этой области (в частности, обе части уравнения можно умножать на число, отличное от нуля);

4) замена некоторого уравнения системы уравнением, которое получается следующим образом: обе части указанного уравнения умножаем на число, отличное от нуля, и прибавляем к ним соответствующие части другого уравнения системы, предварительно умножение на произвольное число.

Случаи, когда нарушается равносильность

1) возведение в квадрат (в четную степень) обеих частей какого-нибудь уравнения системы; могут появиться посторонние «решения», нужна проверка; 2) деление (умножение) обеих частей некоторого уравнения на выражение, которое может обращаться в нуль в области допустимых значений переменных; это может привести как к потери решений, так и к приобретению лишних «решений»; 3) сокращение дроби, входящей в некоторое уравнение, на общий множитель, если этот множитель может обратиться в нуль в области допустимых значений переменных; могут появиться посторонние «решения», нужна проверка.

Важно также отметить, что равносильность может нарушиться, если в результате некоторого преобразования изменяется область допустимых значений переменных. При этом надо иметь в виду, что если область допустимых значений расширилась — могут появиться посторонние решения, если же сузилась – могут быть утеряны решения.

Все сказанное в равной мере относится и к уравнениям, и к системам уравнений (не обязательно нелинейных).

Доказательства приведенных выше утверждений можно найти, например, в книгах и , гл. 9, 1,2, гл. 10, 1 (мы же в целях краткости ограничились лишь конспективным изложением этих важных вопросов).

2. Разложение на множители

Если какое-нибудь уравнение системы удается разложить на множители, то система распадается на несколько более простых систем. Например, в системе (5)

левая часть первого уравнения легко разлагается на множители: . Соответственно, система (5) распадается на две системы: 1. 2. (6)

Система (5) равносильна совокупности систем (6.1) и (6.2) . Это означает следующее: любое решение системы 5 является решением хотя бы одной из систем (6) является решением системы (5). Поэтому, для решения системы (5) достаточно решить более простые системы(6).

Решим указанным способом более сложную задачу.

Задача 2 . Решить систему

Решение. По смыслу задачи xyz ≠0

Почленно складывая все три уравнения системы, и заменяя первое уравнение системы полученным, перейдем к равносильной системе

Которая распадается на две системы:

Рассмотрим первую из этих систем. Разделим второе уравнение этой системы на x , третье – на у , приравняем левые части полученных уравнений; получим систему, равносильную системе 1:

Преобразуем первое уравнение системы (8), учитывая второе уравнение этой же системы и условие (7):

Отсюда, так как x + y = -z , следует, что z = 0 , а это противоречит условию

(7) . Таким образом, система 1 решений не имеет. Рассмотрим систему 2 . Из первого уравнения находим

Используя эти соотношения, легко получаем из второго и третьего уравнений, что ,

Система 2 равносильна системе

Эта последняя система легко решается. Вот её решения:

( 2, 2, 2), (2, -2, -2), (-2, 2, -2), (-2, -2, 2) (9)

Следовательно, решения (9) , и только они, будут решениями исходной системы.

3. Метод замены неизвестных

Этот метод является одним из основных при решении систем.

а) Проиллюстрируем его применение на конкретной задаче.

Решение. Сделаем замену переменных

X y = 4, x y = v, y z = v

В результате указанной замены получим систему:

Из первого уравнения этой системы находим , из третьего —

Подставляя во второе уравнения вместо v и w их выражения через u , получим

Это уравнение легко сводится к квадратному и имеет корни: u=1, u=-1. При u=1 находим v2, w4; при u1 находим v8, w=-2

Итак, мы должны теперь решить две системы:

Решив их, найдём решения исходной системы:

При решении системы трех уравнений и относительно

Мы применили метод исключения неизвестных. Суть этого метода ясна из решения указанной системы.

В общем случае нельзя заранее указать, какие именно замены неизвестных следует сделать при решении той или иной системы. Такие указания можно дать лишь относительно систем специального вида.

Б) При решении системы , симметричной относительно х и у (система называется симметричной относительно х и у , если она не изменяется при перестановке х и у местами) часто бывает удобна замена

U = x + y, v = x y (10)

Задача 4. Найти действительные решения системы

Решение. Данная система симметрична относительно х и у.

Сделав замену ( 10 ) , придем к системе

Складывая уравнения этой системы, получим квадратное уравнение относительно u: u+ u – 12 = 0, которое имеет решения u= -4, u= 3. При u= -4 имеем v= 9, при u= 3, соответственно v= 2.

Теперь нам надо решить две системы:

Нетрудно видеть, что первая из этих систем не имеет действительных решений, а вторая система имеет решения (1,2), (2,1).

Соответственно, исходная система имеет решения .

в) При решении системы из трех уравнений, симметричной относительно x, y, z замена

x+y+z=u, xy+yz+xz=v, xyz=w

как правило, ведет к упрощению исходной системы. После такой замены, решив более простую систему относительно u, v, w необходимо для нахождения неизвестных x, y, z решить систему вида

Исключив два неизвестных (например, x и y) получим относительно z кубическое уравнение. Если удастся его решить, то не составляет труда довести до конца решение системы (11).

4. Однородные системы двух уравнений второй степени с двумя неизвестными.

Так называются системы вида

Решаются они следующим образом. Вначале найдем решения, отвечающие y=0 (если они есть; нахождение таких решений не составляет труда). Предположим затем, что

Далее рассмотрим следующие случаи.

а) Умножим первое уравнение системы (12) на , второе – на — и сложим полученные уравнения:

и перепишем это уравнение в виде

Разделим обе части этого уравнения на (см. условие (13)) в результате получим равносильное уравнение

Решив полученное квадратное уравнение относительно , легко довести до конца решение исходной системы (12).

В этом случае правая часть одного из уравнений системы (12) уже равна нулю и можно, предполагая (13), сразу делить обе части этого уравнения на . Снова придем к уравнению вида (14).

Задача 5. Решить систему.

Очевидно, что при система решений не имеет. Пусть . Умножим первое уравнение на 7, второе – на -3 и сложим полученные уравнения:

Разделив на , придем к уравнению

Пусть вначале . Исключив из первого уравнения исходной системы, найдем , откуда . Это дает два решения исходной системы: (2,1), (-2,-1).

Пусть теперь . Исключим ; получим уравнение , откуда . Это дает еще два решения исходной системы: , .

5. Системы с параметрами

Очень интересны системы с параметрами (буквенными коэффициентами). Здесь всегда следует помнить, что мы имеем дело с бесконечным числом систем уравнений, т.к. буквенный коэффициент может принимать любое действительное значение. Поэтому, чтобы решить систему с параметром, всегда необходимо проводить исследование. Основной задачей исследования является указание области значений параметра, в которой данная система имеет решение. В случае необходимости в исследование включается разбиение области значений параметра на несколько областей, для которых исходная система имеет различные решения. Разберем задачу.

Задача 6. Найти действительные решения системы.

Решение. По смыслу задачи , . Умножим обе части первого уравнения на :

Следовательно, исходная система распадается на две системы:

Рассмотрим каждую из этих систем отдельно.

1. Очевидно, что система 1 имеет единственное решение

Это решение является также решением исходной системы лишь при , ибо если , то .

2. Использую второе уравнение, получим

При система решений не имеет. Пусть

Следовательно, и являются корнями квадратного уравнения

Решим это квадратное уравнение:

Найдем значения , при которых дискриминант неотрицателен:

Отсюда находим: либо . Таким образом, при и система 2 имеет два решения

а при — одно решение

Заметим, что это решение нами было уже найдено.

Ответ. При система несовместна;

при система имеет одно решение

при и система имеет три решения

Разберем еще одну задачу.

Задача 7. При каких значениях система

имеет единственное решение? Найти это решение.

Решение. Из второго уравнения имеем

Подставив это значение в первое уравнение, получим

Дополним выражения в скобках до полных квадратов

Если , то уравнение (15) в области действительных чисел не имеет решений, следовательно, исходная система при этих значениях несовместна. Если , то уравнение (15) определяет на плоскости окружность с центром в точке радиуса (см. рис.)

Очевидно, что координаты любой точки, лежащей на окружности, удовлетворяют уравнению (15). Соответственно, исходная система имеет в этом случае бесконечно много решений.

Пусть, наконец, . В этом случае уравнение (15) определяет единственную точку . В этом случае и исходная система имеет единственное решение. Итак, система имеет единственное решение при .

При единственным решением будет , а при — соответственно, .

6. Иррациональные системы

В заключение рассмотрим иррациональные системы. Так называются системы, в которых неизвестные могут входить под знаком радикала.

Чтобы решить такую систему, следует либо заменой, либо возведением в подходящую степень избавиться от радикалов. Таким образом переходят к нелинейной системе, которую решают вышеописанным способами.

При этом надо иметь в виду следующие обстоятельства (ниже речь идет лишь о действительных числах и действительных решениях систем):

  1. в случае корней четной степени рассматриваются выражение неотрицательно; при этом берется только неотрицательное значение корня. В частности, .
  2. в случае корней нечетной степени подкоренное выражение может быть любым вещественным числом (в этом случае знак корня совпадает со знаком подкоренного выражения).
  3. при воздействии обеих частей некоторого уравнения в квадрат (четную запись) могут появиться лишние корни. В этом случае нужна проверка.
  4. Рассмотрим в качестве примера две задачи.

Задача 8. Решить систему

Решение. Возведем обе части первого уравнения в квадрат и в полученном уравнении подставим из второго уравнения. В результате будем иметь

Возведем еще раз обе части уравнения в квадрат, получим

Отсюда находим, и .

Первое значение отбрасываем, т.к. уравнение (16) имеет смысл лишь при отрицательном значении . Итак, .

Очевидно, что все решения исходной системы содержатся среди решений системы (17). Система (17) имеет решения . Проверка показывает, что исходной системе удовлетворяет лишь одно решение .

Задача 9. Найти действительные решения системы

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Системы нелинейных уравнений с двумя неизвестными Методическая разработка учителя Поляковой Е. А. — презентация

Презентация была опубликована 6 лет назад пользователемАнатолий Шишмарёв

Похожие презентации

Презентация на тему: » Системы нелинейных уравнений с двумя неизвестными Методическая разработка учителя Поляковой Е. А.» — Транскрипт:

1 Системы нелинейных уравнений с двумя неизвестными Методическая разработка учителя Поляковой Е. А.

2 Заполнить таблицу: x + y = 5 x y = 3 x 2 y = 1 4x y = 5 Уравнение x = 5 y x = 3 + y x = 1 + 2y Выражение x через y Выражение y через x y = 5 x y = x 3 y = 4x 5 Повторение

3 Основные методы решения систем уравнений Метод подстановки Метод алгебраического сложения Графический метод решения систем уравнений

4 Основные приёмы решения систем уравнений Использование формул сокращённого умножения; теоремы Виета и т. п. Введение новых переменных Почленно сложение, вычитание, деление или умножение уравнений системы

5 Решить систему уравнений Решение. 1) Из второго уравнения x = 35 5y подставим в первое уравнение: 2) 3(35 5y) + 2y = 27; y + 2y = 27; 13 y = ; 13y= 78; y = 6. 3) y = 6, x = = 5. Ответ: (5; 6) Повторение

6 Решить систему уравнений Вычтем из первого уравнения второе: 5 x + 33 = 29,5 х +9 = 29,5 х = 20,х = 4. откуда y = 3. Ответ: (4; 3) Повторение Подставим y = 3 в первое уравнение системы:

7 25 (1). Решить систему уравнений Решение. 1) Из второго уравнения х = 12 у. 2) Подставим х = 12 у в первое уравнение, получим (12 у)² + у² = 74; у + у² + у² = 74; 2 у² 24 у + 70 = 0; у² 12 у + 35 = 0;у 1 = 5; у 2 = 7. 3) Вернёмся к подстановке х = 12 у, тогдах 1 = 7; х 2 =5. Ответ: (7; 5), (5; 7) На примерах некоторых заданий учебника напомним применение метода подстановки и метода алгебраического сложения

8 25 (2). Решить систему уравнений Решение. 1) Применим формулу разности квадратов 2) Подставим х у = 4 в первое уравнение + 2 х = 12, х = 6. 3) Подставим х = 6 во второе уравнение данной системы: 6 у = 4, у = 2. Ответ: (6; 2)

9 27 (3). Решить систему уравнений Решение. 1) Из первого уравнения х = 8 у. 2) Подставим х = 8 у во второе уравнение, получим у(8 у) = 15; 8 у у² 15 = 0; у² 8 у + 15 = 0;у 1 = 3; у 2 =5. 3) Вернёмся к подстановке х = 8 у, тогдах 1 = 5; х 2 =3. Ответ: (3; 5), (5; 3)

10 Решение систем уравнений, взятых из сборника заданий для подготовки к итоговой аттестации в 9 классе (авт. Л. В. Кузнецова и др.).

11 2.38(1). (4 б) Решить систему уравнений Решение. Произведение множителей равно нулю, если один из них равен 0, другие при этом существуют. Ответ: (1; 2), (1; 1), (3,5; 4).

12 2.39(1). (4 б) Решить систему уравнений Решение. Из первого уравнения выразим переменную х: по смыслу задания; тогда Решаем второе уравнение, получаем ( у) 0

13 4 у² 12 у 16 = 0,у² 3 у 4 = 0, у 1 = 1; у 2 = 4. Если у 1 = 1; то х 1 = 8; у 2 = 4; то х 2 = 2. Ответ: (8; 1), ( 2; 4).

14 2.42(1). (4 б) Решить систему уравнений Решение. Учтём, что х 0, у 0. Сделаем замену получим систему а = 21, а = 3, тогда 23 + b = 4, b = 2. значит, Ответ: ( ; ½) При этом х 0, у 0.

15 2.43(2). (4 б) Решить систему уравнений Решение. Учтём, что х 0, у 0. Преобразуем второе уравнение Решаем второе уравнение, получаем у 1 = 3; у 2 =1, тогда х 1 = 1; х 2 = 3. Ответ: (1; 3), ( 3; 1). При этом х 0, у 0.

16 2.44(2). (4 б) Решить систему уравнений Решение. Учтём, что х ± у 0. Сделаем замену получим систему (2) + 42b = 7, тогда Возвращаемся к исходным переменным:

17 Ответ: ( 5; 1). Данную систему можно решить, не вводя новые переменные, для этого достаточно помножить первое уравнение на 1,5 и почленное сложить первое уравнение со вторым. При этом х ± у 0.

18 2.46(2). (4 б) Решить систему уравнений Решение. Введём новые переменные а = х + у, b = x y, получим систему решая способом сложения систему, получим а = 2; b = 8. Оказалось, что откуда х = 4, у = 2 или х = 2, у = 4. Ответ: ( 4; 2), (2; 4).

19 2.47(2). (4 б) Решить систему уравнений Решение. Вычтем из второго уравнения первое, получим 2 х² = 32;х² = 16; х 1 = 4; х 2 = 4. х 1 = 4, тогда 4 у 16 = 18, у 1 = ½ ; х 2 = 4, тогда 4 у 16 = 18, у 2 = ½. Ответ: ( 4; ½ ), (4; ½ ).

20 2.48(1). (4 б) Решить систему уравнений Решение. 1) Применим формулу разности квадратов 2) Подставим х² + у² = 5 во второе уравнение системы + 2 х² = 8; х² = 4;х 1 = 2; х 2 = 2. 3) х 1 = 2, тогда 4 + у² = 5, у² = 1, у 1 = 1; у 2 = 1. х 2 = 2, тогда 4 + у² = 5, у² = 1, у 3 = 1; у 4 = 1. Ответ: ( 2; 1), ( 2; 1), ( 2; 1), (2; 1)

21 2.49(1). (4 б) Решить систему уравнений Решение. Применим формулу разности квадратов Подставим х + у = 7 во второе уравнение решим второе уравнение системы ( х у )² = 25, тогда х у = 5 или х у = 5.

22 х 1 = 1; у 1 = 6. х 2 = 6; у 2 = 1. Ответ: ( 1; 6), (6; 1).

23 2.50(1). (4 б) Решить систему уравнений Решение. Второе уравнение помножим на 2: Сложим второе уравнение с первым, получим х = 1. Подставим х = 1, например, во второе уравнение исходной системы, получим у = 2. Подставляя х = 1, у = 2 в третье уравнение, получаем 1² + ( 2)² 4. Ответ: исходная система решений не имеет

24 Графический способ решения систем уравнений

25 1) Прямые пересекаются, т. е. имеют одну общую точку. Тогда система уравнений имеет одно решение. х у 01 1 x – y = 1 x + y = 2 Коэффициенты при неизвестных не пропорциональны 1 : 1 1 : (1) Повторение

26 х у x + 4y = 8 x + 2y = 2 2) Прямые параллельны, т. е. не имеют общих точек. Тогда система Уравнений не имеет решений. Коэффициенты при неизвестных не пропорциональны свободным членам 2 : 1 = 4 : 2 8 : (2) Повторение

27 х у x – 2y = 2 3x – 6y = 6 3) Прямые совпадают. Тогда система уравнений имеет бесконечное множество решений. Коэффициенты при неизвестных пропорциональны свободным членам 3 : 1 = 6 : (2) = 6 : 2 Повторение

28 0 х у 1 1 Решить графически систему Преобразуем уравнения системы: Строим в одной системе координат графики уравнений системы Самостоятельно определите решения системы.


источники:

http://www.resolventa.ru/spr/algebra/system1.htm

http://www.myshared.ru/slide/1218681/