Системы однородных уравнений нетривиальное решение тогда

Теорема 1. Однородная система (15) имеет нетривиальное решение тогда и только тогда, когда ранг ее матрицы меньше числа переменных,т.е. r(A) Стр 10 из 10

Доказательство. Существование нетривиального решения системы (15) эквивалентно линейной зависимости столбцов матрицы системы (т.е. существуют такие числа х1, x2,…,xn, не все равные нулю, что справедливы равенства (15)).

По теореме о базисном миноре столбцы матрицы линейно зависимы Û, когда не все столбцы этой матрицы являются базисными, т.е. Û, когда порядок r базисного минора матрицы меньше числа n ее столбцов. Ч.т.д.

Следствие. Квадратная однородная система имеет нетривиальные решения Û, когда |А|=0.

Теорема 2. Если столбцы х (1) ,х (2) ,…,х ( s ) решения однородной системы АХ=0, то любая их линейная комбинация так же является решением этой системы.

Доказательство. Рассмотрим любую комбинацию решений:

х= , lkÎR

Тогда АХ=А( )= = =0. ч.т.д.

Следствие 1.Если однородная система имеет нетривиальное решение, то она имеет бесконечно много решений.

Т.о. необходимо найти такие решения х (1) ,х (2) ,…,х ( s ) системы Ах=0, чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом.

Определение. Система k=n-r (n –количество неизвестных в системе, r=rg A) линейно независимых решений х (1) ,х (2) ,…,х ( k ) системы Ах=0 называется фундаментальной системой решенийэтой системы.

Теорема 3. Пусть дана однородная система Ах=0 с n неизвестными и r=rg A. Тогда существует набор из k=n-r решений х (1) ,х (2) ,…,х ( k ) этой системы, образующих фундаментальную систему решений.

Доказательство. Не ограничивая общности, можно считать, что базисный минор матрицы А расположен в верхнем левом углу. Тогда, по теореме о базисном миноре, остальные строки матрицы А являются линейными комбинациями базисных строк. Это означает, что если значения х12,…,xn удовлетворяют первым r уравнениям т.е. уравнениям, соответствующим строкам базисного минора), то они удовлетворяют и другим уравнениям. Следовательно, множество решений системы не изменится, если отбросить все уравнения начиная с (r+1)-го. Получим систему:

(16)

Т.к. в этом случае все bi=0, то вместо формул

cj= (Mj(bi)-cr+1Mj(ai,r+1)-…-cnMj(ain)) j=1,2,…,r ((13), получим:

cj=- (cr+1Mj(ai,r+1)-…-cnMj(ain)) j=1,2,…,r (13¢)

Если задать свободным неизвестным хr+1r+2,…,xn произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., любое решение однородной СЛАУ однозначно определяется значениями свободных неизвестных хr+1r+2,…,xn. Рассмотрим следующие k=n-r серий значений свободных неизвестных:

=1, =0, …., =0,

=1, =0, …., =0, (17)

=1, =0, …., =0,

(Номер серии указан верхним индексом в скобках, а серии значений выписаны в виде столбцов. В каждой серии =1, если i=j и =0, если i¹j.

i-й серии значений свободных неизвестных однозначно соответствуют значения , ,…, базисных неизвестных. Значения свободных и базисных неизвестных в совокупности дают решения системы (17).

Покажем, что столбцы еi= , i=1,2,…,k (18)

образуют фундаментальную систему решений.

Т.к. эти столбцы по построению являются решениями однородной системы Ах=0 и их количество равно k, то остается доказать линейную независимость решений (16). Пусть есть линейная комбинация решенийe1,e2,…,ek (х (1) , х (2) ,…,х ( k ) ), равная нулевому столбцу:

Тогда левая часть этого равенства является столбцом, компоненты которого с номерами r+1,r+2,…,n равны нулю. Но (r+1)-я компоненты равна l11+l20+…+lk0=l1. Аналогично, (r+2)-я компонента равна l2,…, k-я компонента равна lk. Поэтому l1=l2=…=lk=0, что и означает линейную независимость решений e1,e2,…,ek (х (1) , х (2) ,…,х ( k ) ).Ч.т.д.

Построенная фундаментальная система решений (18) называется нормальной. В силу формулы (13¢) она имеет следующий вид:

(20)

Следствие 2. Пусть e1,e2,…,ek-нормальная фундаментальная система решений однородной системы, тогда множество всех решений можно описать формулой:

где с12,…,сk – принимают произвольные значения.

Доказательство. По теореме 2 столбец (19) является решением однородной системы Ах=0. Остается доказать, что любое решение этой системы можно представить в виде (17). Рассмотрим столбец хr+1e1+…+ynek. Этот столбец совпадает со столбцом у по элементам с номерами r+1,…,n и является решением (16). Поэтому столбцы х и у совпадают, т.к. решения системы (16) определяются однозначно набором значений ее свободных неизвестных xr+1,…,xn, а у столбцов у и х эти наборы совпадают. Следовательно, у=х= уr+1e1+…+ynek, т.е. решение у является линейной комбинацией столбцов e1,…,yn нормальной ФСР. Ч.т.д.

Доказанное утверждение справедливо не только для нормальной ФСР, но и для произвольной ФСР однородной СЛАУ.

Установим связь между решениями неоднородной СЛАУ (1) и соответствующей ей однородной СЛАУ (15)

Теорема 4. Сумма любого решения неоднородной системы (1) и соответствующей ей однородной системы (15) является решением системы (1).

Доказательство. Если c1,…,cn – решение системы (1), а d1,…,dn — решение системы (15), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c1+d1,…,cn+dn, получим:

= + =bi+0=bi ч.т.д.

Теорема 5. Разность двух произвольных решений неоднородной системы (1) является решением однородной системы (15).

Доказательство. Если c¢1,…,c¢n и c²1,…,c²n – решения системы (1), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c¢1-с²1,…,c¢n-с²n, получим:

= =bi-bi=0 ч.т.д.

Из доказанных теорем следует, что общее решение системы m линейных однородных уравнений с n переменными равно сумме общего решения соответствующей ей системы однородных линейных уравнений (15) и произвольного числа частного решения этой системы (15).

В качестве частного решения неоднородной системы естественно взять то его решение, которое получается, если в формулах cj= (Mj(bi)-cr+1Mj(ai,r+1)-…-cnMj(ain)) j=1,2,…,r ((13) положить равными нулю все числа cr+1,…,cn,т.е.

Х0=( ,…, ,0,0,…,0) (23)

Рассмотрим систему двух уравнений с двумя переменными:

в которой хотя бы один из коэф. aij 0.

Для решения исключим х2, умножив первое уравнение на а22, а второе – на (-а12) и сложив их: Исключим х1, умножив первое уравнение на (-а21), а второе – на а11 и сложив их: Выражение в скобках – определитель

Обозначив , , тогда система примет вид: , т.о., если , то система имеет единственное решение: , .

Если Δ=0, а (или ), то система несовместна, т.к. приводится к виду Если Δ=Δ12=0, то система неопределенная, т.к. приводится к виду

Системы линейных однородных уравнений

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Свойства систем линейных однородных уравнений

Теорема. Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема. Любая линейная комбинация решений системы также является решением этой системы.
Определение. Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений, если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из ( n-r ) решений.

4.2.3 Системы линейных однородных уравнений

Рассмотрим систему вида

, (1)

Где или .

Однородная система линейных уравнений (1) всегда совместна, так как . Она заведомо имеет решение, состоящее из нулей , которое называется тривиальным.

В каких случаях существует нетривиальное решение?

Теорема. Для того чтобы система (1) имела нетривиальные решения, необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Действительно, в этом случае есть свободные неизвестные, которым можно придавать любые, в том числе и ненулевые, значения.

Выделим частный случай систем (1), когда .

Теорема. Система (1) в случае имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Системы линейных однородных уравнений обладают важным свойством, которое сформулируем в виде теоремы.

Теорема. Любая линейная комбинация решений системы (1) также является решением этой системы.

Возникает вопрос, можно ли подобрать такую совокупность решений системы (1), чтобы любое решение системы можно было бы найти как линейную комбинацию этих решений? Такая совокупность решений существует и носит название фундаментальной.

Определение. Совокупность решений системы линейных однородных уравнений (1) называется фундаментальной системой решений, если эта совокупность состоит из линейно независимых решений и любое решение системы (1) является линейной комбинацией этих решений.

Теорема. Если ранг матрицы системы (1) меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из решений.

Пример 22. Найти общее решение и какую-нибудь фундаментальную систему решений для системы

Решение. Алгоритм решения такой же, как и для систем линейных неоднородных уравнений.

Оперируя только со строками, находим ранг матрицы, базисный минор; объявляем зависимые и свободные неизвестные и находим общее решение.

Первая и вторая строки пропорциональны, одну из них вычеркнем:

.

Зависимые переменные – , свободные – . Из первого уравнения находим , тогда

; .

Общее решение имеет вид:

Находим фундаментальную систему решений, которая состоит из решений. В нашем случае , следовательно, фундаментальная система решений состоит из двух решений, причем эти решения должны быть линейно независимыми. Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 2. Достаточно придать свободным неизвестным и значения из строк определителя второго порядка, отличного от нуля, и подсчитать . Простейшим определителем, отличным от нуля, является .

Таким образом, первое решение: , второе – .

Эти два решения составляют фундаментальную систему решений. Заметим, что фундаментальная система не единственна (определителей, отличных от нуля, можно составить сколько угодно).

Пример 22. Найти общее решение и фундаментальную систему решений системы

,

Отсюда следует, что ранг матрицы равен 3 и равен числу неизвестных. Значит, система не имеет свободных неизвестных, а поэтому имеет единственное решение – тривиальное.

Для самостоятельного решения.

1. Доказать, что система совместна.

Найти ее общее и частное решения, приняв в качестве свободных неизвестных и полагая .

Ответ: .

2. Образуют ли строки каждой из матриц и , где , , фундаментальную систему решений для системы

Ответ: строки матрицы не образуют фундаментальную систему решений, строки матрицы образуют.

3. Три прямые , , образуют треугольник. Охарактеризовать систему трех уравнений с точки зрения совместности и ранга матрицы коэффициентов.

Ответ выбрать из списка: 1) система совместна, ; 2) система несовместна, ; 3) совместна любая пара уравнений, .


источники:

http://math.semestr.ru/gauss/equations.php

http://matica.org.ua/metodichki-i-knigi-po-matematike/vysshaia-matematika-erokhina-a-p-baibakova-l-n/4-2-3-sistemy-lineinykh-odnorodnykh-uravnenii