Системы уравнений с двумя параметрами

Системы уравнений с двумя параметрами

§ 3. Решение систем с параметром и с модулями

В данном параграфе мы познакомимся со способами решения систем двух линейных уравнений с модулями.

Решите систему уравнений $$ \left\<\begin\left|x-y\right|=5,\\ 3x+2y=10.\end\right.$$

Модуль в уравнении `|x-y|=5` можно «раскрыть», пользуясь определением модуля числа:

$$\left|x-y\right|=\left\<\beginx-y,\;\mathrm<или>\;x-y\geq0,\\y-x,\;\mathrm<или>\;x-y =0` записывается в виде `x-y=5`, а при `x-y =0`, система имеет вид:

Итак, `x=5`, `y=0`, условие `x-y>=0` выполняется. Значит, найденные пары чисел является решением исходной системы.

2 случай. Если `x-y =0`, `y>=0`;

4) `x =0`, `y>=0`, система имеет вид:

Оба полученные значения удовлетворяют заданным условиям: `1,5>=0`, `0>=0`.

2 случай. `x>=0`, `y =0`.

3 случай. `x =0` система имеет вид:

Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.

4 случай. `x -5/2`, то `|y+5/2|=y+5/2`; если `y то `|y+5/2|=-y-5/2`.

Выражение `y-1=0`, если `y=1`.

Если `y>1`, то `|y-1|=y-1`, а если `y =1`, то `|y-1|=y-1` и `|y+5/2|=y+5/2`, получаем уравнение:

Тогда `x=1/3(2*2+5)=3`. Число `2>1`, так что пара `(3;2)` является решением системы.

Пусть теперь `-5/2 хождения `y` получаем уравнение

Число `8/13` больше `(-5/2)`, но меньше, чем `1`, поэтому пара чисел `(27/13;8/13)` является решением системы.

Решение систем линейных уравнений с параметрами

Разделы: Математика

Цель:

  • повторить решение систем линейных уравнений с двумя переменными
  • дать определение системы линейных уравнений с параметрами
  • научит решать системы линейных уравнений с параметрами.

Ход урока

  1. Организационный момент
  2. Повторение
  3. Объяснение новой темы
  4. Закрепление
  5. Итог урока
  6. Домашнее задание

2. Повторение:

I. Линейное уравнение с одной переменной:

1. Дайте определение линейного уравнения с одной переменной

[Уравнение вида ax=b, где х – переменная, а и b некоторые числа, называется линейным уравнением с одной переменной]

2. Сколько корней может иметь линейное уравнение?

[- Если а=0, b0, то уравнение не имеет решений, х

— Если а=0, b=0, то х R

— Если а0, то уравнение имеет единственное решение, х =

3. Выясните, сколько корней имеет уравнение (по вариантам)

I ряд – I вариант

Ответ: много корнейII ряд – II вариант

Ответ: корней нетIII ряд – III вариант

Ответ: единственный корень

II. Линейное уравнение с 2 –мя переменными и система линейных уравнений с 2- мя переменными.

1. Дайте определение линейного уравнения с двумя переменными. Приведите пример.

[Линейным уравнением с двумя переменными называются уравнения вида ах +by=с, где х и у – переменные, а, b и с – некоторые числа. Например, х-у=5]

2. Что называется решением уравнения с двумя переменными?

[Решением уравнения с двумя переменными называются пара значений переменных, обращающие это уравнение в верное равенство.]

3. Является ли пара значений переменных х = 7, у = 3 решением уравнения 2х + у = 17?

4. Что называется графиком уравнения с двумя переменными?

[Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых является решениями этого уравнения.]

5. Выясните, что представляет собой график уравнения:

[Выразим переменную у через х: у=-1,5х+3

Формулой у=-1,5х+3 является линейная функция, графиком которой служит прямая. Так как, уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6]

6. Что является графиком уравнения ах+bу=с с переменными х и у, где а0 или b0?

[Графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая.]

7. Что называется решением системы уравнений с двумя переменными?

[Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство]

8. Что значит решить систему уравнений?

[Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.]

9. Выясните, всегда ли имеет такая система решения и если имеет, то сколько (графическим способом).

10. Сколько решений может иметь система двух линейных уравнений с двумя переменными?

[Единственное решение, если прямые пересекаются; не имеет решений, если прямые параллельны; бесконечно много, если прямые совпадают]

11. Каким уравнением обычно задается прямая?

12. Установите связь между угловыми коэффициентами и свободными членами:

I вариант:
  • у=-х+2
  • y= -x-3,

k1 = k2, b1b2, нет решений;II вариант:

  • y=-х+8
  • y=2x-1,

k1k2, одно решение;III вариант:

  • y=-x-1
  • y=-x-1,

k1 = k2, b1 = b2, много решений.

Вывод:

  1. Если угловые коэффициенты прямых являющихся графиками этих функций различны, то эти прямые пересекаются и система имеет единственное решение.
  2. Если угловые коэффициенты прямых одинаковы, а точки пересечения с осью у различны, то прямые параллельны, а система не имеет решений.
  3. Если угловые коэффициенты и точки пересечения с осью у одинаковы, то прямые совпадают и система имеет бесконечно много решений.

На доске таблица, которую постепенно заполняет учитель вместе с учениками.

III. Объяснение новой темы.

где A1, A2, B1,B2, C1 C2 – выражения, зависящие от параметров, а х и у – неизвестные, называется системой двух линейных алгебраических уравнений с двумя неизвестными в параметрах.

Возможны следующие случаи:

1) Если , то система имеет единственное решение

2) Если , то система не имеет решений

3) Если , то система имеет бесконечно много решений.

IV. Закрепление

Пример 1.

При каких значениях параметра а система

  • 2х — 3у = 7
  • ах — 6у = 14

а) имеет бесконечное множество решений;

б) имеет единственное решение

а) , а=4

б) , а?4

а) если а=4, то система имеет бесконечное множество решений;

б) если а4, то решение единственное.

Пример 2.

Решите систему уравнений

  • x+(m+1)y=1
  • x+2y=n

Решение: а) , т.е. при m1 система имеет единственное решение.

б) , т.е. при m=1 (2=m+1) и n1 исходная система решений не имеет

в) , при m=1 и n=1 система имеет бесконечно много решений.

Ответ: а) если m=1 и n1, то решений нет

б) m=1 и n=1, то решение бесконечное множество

  • у — любое
  • x=n-2y

в) если m1 и n — любое, то

y= x=

Пример 3.

Для всех значений параметра а решить систему уравнений

  • ах-3ау=2а+3
  • х+ау=1

Решение: Из II уравнения найдем х=1-ау и подставим в I уравнение

1) а=0. Тогда уравнение имеет вид 0*у=3 [у ]

Следовательно, при а=0 система не имеет решений

Следовательно, у . При этом х=1-ау=1+3у

3) а0 и а-3. Тогда у=-, х=1-а(-=1+1=2

1) если а=0, то (х; у)

2) если а=-3, то х=1+3у, у

3) если а0 и а?-3, то х=2, у=-

Рассмотрим II способ решения системы (1).

Решим систему (1) методом алгебраического сложения: вначале умножим первое уравнение системы на В2, второе на – В1 и сложим почленно эти уравнения, исключив, таким образом, переменную у:

Т.к. А1В22В10, то х =

т.к. А2В11В2 0 у =

Для удобства решения системы (1) введем обозначения:

главный определитель

Теперь решение системы (1) можно записать с помощью определителей:

х= ; у=

Приведенные формулы называют формулами Крамера.

— Если , то система (1) имеет единственное решение: х=; у=

— Если , или , , то система (1) не имеет решений

— Если , , , , то система (1) имеет бесконечное множество решений.

В этом случае систему надо исследовать дополнительно. При этом, как правило, она сводится к одному линейному уравнению. В случае часто бывает удобно исследовать систему следующим образом: решая уравнение , найдем конкретные значения параметров или выразим один из параметров через остальные и подставим эти значения параметров в систему. Тогда получим систему с конкретными числовыми коэффициентами или с меньшим числом параметров, которую надо и исследовать.

Если коэффициенты А1, А2, В1, В2, системы зависят от нескольких параметров, то исследовать систему удобно с помощью определителей системы.

Пример 4.

Для всех значений параметра а решить систему уравнений

  • (а+5)х+(2а+3)у=3а+2
  • (3а+10)х+(5а+6)у=2а+4

Решение: Найдем определитель системы:

= (а+5)(5а+6) – (3а+10) (2а+3)= 5а 2 +31а+30-6а 2 -29а-30=-а 2 +2а=а(2-а)

= (3а+2) (5а+6) –(2а+4)(2а+3)=15а 2 +28а+12-4а 2 -14а-12=11а 2 +14а=а(11а+14)

=(а+5) (2а+4)-(3а+10)(3а+2)=2а 2 +14а+20-9а 2 -36а-20=-7а 2 -22а=-а(7а+22)

1) Тогда

х= у=

2) или а=2

При а=0 определители

Тогда система имеет вид:

  • 5х+3у=2 5х+3у=2
  • 10х+6у=4

При а=2 Этого достаточно, чтобы утверждать, что система не имеет решений.

1) если а и а, то х= у=

2) если а=0, то х,

3) если а=2, то (х; у)

Пример 5.

Для всех значений параметров а и b решить систему уравнений

Решение: = =а+1-2b

= = b -6; = 3a+3-b

1) . Тогда

х= у=

2)

Подставив выражение параметра а в систему, получим:

  • 2bx+2y=b 2bx+2y=b
  • bx+y=3 2bx+2y=6

Если b6, то система не имеет решений, т.к. в этом случае I и II уравнения системы противоречат друг другу.

Если b=6, а=2b-1=2*6-1=11, то система равносильна одному уравнению

12х+2у=6 у=3-6х

1) если , (а), то x=, y=

2) если b, a, то система не имеет решений

3) если b=6, а=11, то х, у=3-6х

Итог урока: Повторить по таблице и поставить оценки.

При каких значениях параметра система уравнений

  • 3х-2у=5
  • 6х-4у=b

а) имеет бесконечное множество решений

б) не имеет решений

б) b10

Системы уравнений с двумя переменными и параметрами

п.1. Решение системы линейных уравнений с параметром

Например:
При каком значении a система уравнений имеет одно решение: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \).
Система имеет одно решение, если главный определитель не равен нулю: $$ \Delta = \begin \mathrm & 1 \\ 1 & \mathrm \end= a^2-1\neq 0 \Rightarrow a\neq \pm 1 $$

Ответ: при всех действительных a, кроме a ≠ ± 1.

п.2. Решение системы нелинейных уравнений с параметром

При решении системы нелинейных уравнений с параметром чаще всего используем графический метод (см. §15 данного справочника).

Например:
При каком значении a система уравнений имеет одно решение: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \).
\( \mathrm \) – уравнение окружности с центром в начале координат, и переменным радиусом a.
\( \mathrm \) – уравнение прямой.
Система имеет одно решение, если прямая является касательной к окружности:

Точка A является решением: x = 1, y = 1.
Подставляем найденное решение в уравнение для окружности: 1 2 + 1 2 = 2 $$ \mathrm> $$

п.3. Примеры

Пример 2. Найти все значения параметра a, при каждом из которых система
\( \left\< \begin < l >\mathrm <|x|+|y|=4>& \\ \mathrm <(x-3)^2+(y-3)^2=(a+1)^2>& \end\right. \) имеет единственное решение.
Первое уравнение – квадрат с вершинами (±4; 0),(0; ±4); второе уравнение – окружность переменного радиуса с центром в точке (3; 3).

Единственное решение соответствует радиусу \( \mathrm>. \)
При увеличении радиуса будет 2, 3 или 4 точки пересечения. При дальнейшем увеличении окружность становится слишком большой, пересечений с квадратом нет.
Получаем:\( \mathrm<|a+1|=\sqrt<2>\Rightarrow a+1=\pm\sqrt<2>\Rightarrow a_<1,2>=-1\pm\sqrt<2>>. \)

Пример 3. Найти все значения параметра a, при каждом из которых система
\( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \) имеет единственное решение. $$ \left\< \begin < l >\mathrm \left[\begin < l >\mathrm <4-2x,\ \ x\lt 0>& \\ \mathrm <4,\ \ 0\leq x\leq 4>& \\ \mathrm <2x-4,\ \ x\gt 0>& \end\right. & \\ \mathrm & \end\right. $$ Первое уравнение – ломаная, второе – парабола ветками вниз с подвижной вершиной на оси x = 2.

При (a – 1) 2 2 = 4 одно решение.
При (a – 1) 2 > 4 два решения.
Получаем:\( \mathrm <(a-1)^2=4\Rightarrow a-1=\pm 2\Rightarrow>\left[\begin < l >\mathrm & \\ \mathrm & \end\right. \)


источники:

http://urok.1sept.ru/articles/550012

http://reshator.com/sprav/algebra/9-klass/sistemy-uravnenij-s-dvumya-peremennymi-i-parametrami/