Системы уравнений с матрицами примеры

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Матрицы и системы линейных уравнений

Содержание:

Матрицы и системы линейных уравнений. Матричная запись системы линейных уравнений

Одно из важных применений матриц связано с системами линейных уравнений. Рассмотрим систему

(1)

и соответствующие ей матрицы

Тогда систему (1) можно заменить единственным уравнением АХ = В.

Уравнение (2) называют матричной записью системы (1). Например, система

в матричной записи выглядит так:

Заметим, что матричную запись систем линейных уравнений применяли древнекитайские математики во в. до н.э., а в европейской науке она применяется с XIX

Обратная, вырожденная и невырожденная матрицы

Рассмотрим вопросы, связанные с умножением квадратных матриц порядка . Тогда произведение АВ имеет смысл для любых матриц А и В . Мы уже вводили понятие единичной матрицы

и говорили о том, что для любой квадратной матрицы А выполняется свойство АЕ = ЕА = А.

Известно, что любого числа существует обратное число , для которого .

Нечто подобное имеет место и для квадратных матриц, причем роль условия играет своеобразное условие невырожденности матрицы А.

Определение 1. Пусть А — квадратная матрица порядка . Квадратная матрица того же порядка называется обратной для А, если .

Для обратных матриц выполняется свойство: .

Заметим, что строки матрицы А — это арифметические векторы из , поэтому можно ставить вопрос об их линейной зависимости или независимости.

Определение 2. Квадратная матрица А называется невырожденной, если ее строки линейно независимы, и вырожденной в противном случае.

В лекции 1 мы указывали, что линейно независимая система векторов не может содержать нулевой вектор. Т.о., в невырожденной матрице не может быть нулевых строк. Над строками матрицы можно совершать элементарные преобразования:

1) переставлять строки;

2) вычеркивать нулевую строку;

3) умножать строку на число ;

4) прибавлять к одной из строк другую строку, умноженную на любое число. Заметим, что речь идет о тех же самых элементарных преобразованиях, которые используются в методе Гаусса, с той лишь разницей, что теперь это строки матрицы, а не уравнения системы.

Теорема 1. Если над строками невырожденной матрицы А проделать элементарные преобразования, то получим снова невырожденную матрицу.

Теорема 2. Для любой невырожденной матрицы А существует обратная матрица .

Метод Жордана-Гаусса решения матричных уравнений

Рассмотрим матричное уравнение

, (3)

где А и В — две данные матрицы, X — искомая матрица. Существенно, что А — квадратная матрица порядка . В частном случае, когда В = Е, искомая матрица X будет обратной к А , т.е.

Эффективным методом решения матричных уравнений (3) является метод полного исключения Жордана-Гаусса.

Метод Жордана-Гаусса. Пусть А — невырожденная матрица. Припишем к ней (например, справа) матрицу В и далее будем работать уже со «сдвоенной» матрицей:

Если, выполняя элементарные преобразования над строками этой матрицы, привести ее левую часть к единичной матрице , то правая часть приведется к искомой матрице X. Фактически, метод Жордана-Гаусса можно представить следующей схемой:

В частном случае, когда нужно найти обратную матрицу надо совершить переход:

.

Пример №26

Методом Жордана-Гаусса для матрицы

найти обратную матрицу

Решение:

Составим «сдвоенную» матрицу

С помощью элементарных преобразований приведем ее левую часть к единичной матрице :

Правее вертикальной черты получилась обратная матрица :

Замечание 1. При нахождении обратной матрицы методом Жордана-Гаусса возможны вычислительные ошибки. Поэтому желательно делать проверку:

.

Решение системы с помощью обратной матрицы

Рассмотрим произвольную систему линейных уравнений с неизвестными:

Запишем эту систему матричным уравнением АХ — В,

Теорема 3. Пусть квадратная матрица А является невырожденной. Тогда решением матричного уравнения АХ = В будет

.

Доказательство. Используя очевидные преобразования, получим

. Теорема доказана.

Замечание 2. Результат, полученный при доказательстве теоремы 3, часто называют методом обратной матрицы.

Пример №27

Решить систему методом обратной матрицы:

Решение:

Этой системе соответствуют матрицы:

Подобно тому, как это делалось в примере 1, найдем обратную матрицу к матрице А:

Используя теорему 3, получим

Итак, наша система имеет решение: . Проверкой убеждаемся в том, что оно правильное.

Эта лекция взята из раздела о предмете высшая математика, там вы найдёте другие лекци по всем темам высшей математики:

Высшая математика: полный курс лекций

Другие темы которые вам помогут понять высшую математику:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Решение систем линейных уравнений матричным методом

Вы будете перенаправлены на Автор24

Матричный способ решения систем линейных уравнений

Рассмотрим систему линейных уравнений следующего вида:

Числа $a_ (i=1..n,j=1..n)$ — коэффициенты системы, числа $b_ (i=1..n)$ — свободные члены.

В случае, когда все свободные члены равны нулю, система называется однородной, в противном случае — неоднородной.

Каждой СЛАУ можно поставить в соответствие несколько матриц и записать систему в так называемом матричном виде.

Матрица коэффициентов системы называется матрицей системы и обозначается, как правило, буквой $A$.

Столбец свободных членов образует вектор-столбец, который, как правило, обозначается буквой $B$ и называется матрицей свободных членов.

Неизвестные переменные образуют вектор-столбец, который, как правило, обозначается буквой $X$ и называется матрицей неизвестных.

Описанные выше матрицы имеют вид:

Используя матрицы, СЛАУ можно переписать в виде $A\cdot X=B$. Такую запись часто называют матричным уравнением.

Вообще говоря, в матричном виде записать можно любую СЛАУ.

Примеры решения системы с помощью обратной матрицы

Дана СЛАУ: $\left\<\begin <3x_<1>-2x_ <2>+x_ <3>-x_ <4>=3> \\ -12x_ <2>-x_ <3>-x_ <4>=7> \\ <2x_<1>-3x_ <2>+x_ <3>-3x_ <4>=5> \end\right. $. Записать систему в матричном виде.

Решение:

В случае, когда матрица системы является квадратной, СЛАУ можно решить уравнения матричным способом.

Имея матричное уравнение $A\cdot X=B$, можно выразить из него $X$ следующим способом:

$A^ <-1>\cdot A\cdot X=A^ <-1>\cdot B$

$A^ <-1>\cdot A=E$ (свойство произведения матриц)

$E\cdot X=A^ <-1>\cdot B$

$E\cdot X=X$ (свойство произведения матриц)

Алгоритм решения системы алгебраических уравнений с помощью обратной матрицы:

  • записать систему в матричном виде;
  • вычислить определитель матрицы системы;
  • если определитель матрицы системы отличен от нуля, то находим обратную матрицу;
  • решение системы вычисляем по формуле $X=A^ <-1>\cdot B$.

Готовые работы на аналогичную тему

Если матрица системы имеет определитель, не равный нулю, то данная система имеет единственное решение, которое можно найти матричным способом.

Если матрица системы имеет определитель, равный нулю, то данную систему нельзя решить матричным способом.

Дана СЛАУ: $\left\<\begin +3x_ <3>=26> \\ <-x_<1>+2x_ <2>+x_ <3>=52> \\ <3x_<1>+2x_ <2>=52> \end\right. $. Решить СЛАУ методом обратной матрицы, если это возможно.

Решение:

Нахождение определителя матрицы системы:

$\begin <\det A=\left|\begin <1>& <0>& <3>\\ <-1>& <2>& <1>\\ <3>& <2>& <0>\end\right|=1\cdot 2\cdot 0+0\cdot 1\cdot 3+2\cdot (-1)\cdot 3-3\cdot 2\cdot 3-2\cdot 1\cdot 1-0\cdot (-1)\cdot 0=0+0-6-18-2-0=-26\ne 0> \end$ Так как определитель не равен нулю, то матрица системы имеет обратную матрицу и, следовательно, система уравнений может быть решена методом обратной матрицы. Полученное решение будет единственным.

Решим систему уравнений с помощью обратной матрицы:

Искомая обратная матрица:

Найдем решение системы:

$X=\left(\begin <2>\\ <23>\\ <8>\end\right)$ — искомое решение системы уравнений.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 18 11 2021


источники:

http://natalibrilenova.ru/matritsyi-i-sistemyi-linejnyih-uravnenij/

http://spravochnick.ru/matematika/matricy/reshenie_sistem_lineynyh_uravneniy_matrichnym_metodom/