Системы уравнений с параметром метод подстановки

Системы уравнений с двумя переменными и параметрами

п.1. Решение системы линейных уравнений с параметром

Например:
При каком значении a система уравнений имеет одно решение: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \).
Система имеет одно решение, если главный определитель не равен нулю: $$ \Delta = \begin \mathrm & 1 \\ 1 & \mathrm \end= a^2-1\neq 0 \Rightarrow a\neq \pm 1 $$

Ответ: при всех действительных a, кроме a ≠ ± 1.

п.2. Решение системы нелинейных уравнений с параметром

При решении системы нелинейных уравнений с параметром чаще всего используем графический метод (см. §15 данного справочника).

Например:
При каком значении a система уравнений имеет одно решение: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \).
\( \mathrm \) – уравнение окружности с центром в начале координат, и переменным радиусом a.
\( \mathrm \) – уравнение прямой.
Система имеет одно решение, если прямая является касательной к окружности:

Точка A является решением: x = 1, y = 1.
Подставляем найденное решение в уравнение для окружности: 1 2 + 1 2 = 2 $$ \mathrm> $$

п.3. Примеры

Пример 2. Найти все значения параметра a, при каждом из которых система
\( \left\< \begin < l >\mathrm <|x|+|y|=4>& \\ \mathrm <(x-3)^2+(y-3)^2=(a+1)^2>& \end\right. \) имеет единственное решение.
Первое уравнение – квадрат с вершинами (±4; 0),(0; ±4); второе уравнение – окружность переменного радиуса с центром в точке (3; 3).

Единственное решение соответствует радиусу \( \mathrm>. \)
При увеличении радиуса будет 2, 3 или 4 точки пересечения. При дальнейшем увеличении окружность становится слишком большой, пересечений с квадратом нет.
Получаем:\( \mathrm<|a+1|=\sqrt<2>\Rightarrow a+1=\pm\sqrt<2>\Rightarrow a_<1,2>=-1\pm\sqrt<2>>. \)

Пример 3. Найти все значения параметра a, при каждом из которых система
\( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \) имеет единственное решение. $$ \left\< \begin < l >\mathrm \left[\begin < l >\mathrm <4-2x,\ \ x\lt 0>& \\ \mathrm <4,\ \ 0\leq x\leq 4>& \\ \mathrm <2x-4,\ \ x\gt 0>& \end\right. & \\ \mathrm & \end\right. $$ Первое уравнение – ломаная, второе – парабола ветками вниз с подвижной вершиной на оси x = 2.

При (a – 1) 2 2 = 4 одно решение.
При (a – 1) 2 > 4 два решения.
Получаем:\( \mathrm <(a-1)^2=4\Rightarrow a-1=\pm 2\Rightarrow>\left[\begin < l >\mathrm & \\ \mathrm & \end\right. \)

Системы уравнений с параметром метод подстановки

§ 3. Решение систем с параметром и с модулями

В данном параграфе мы познакомимся со способами решения систем двух линейных уравнений с модулями.

Решите систему уравнений $$ \left\<\begin\left|x-y\right|=5,\\ 3x+2y=10.\end\right.$$

Модуль в уравнении `|x-y|=5` можно «раскрыть», пользуясь определением модуля числа:

$$\left|x-y\right|=\left\<\beginx-y,\;\mathrm<или>\;x-y\geq0,\\y-x,\;\mathrm<или>\;x-y =0` записывается в виде `x-y=5`, а при `x-y =0`, система имеет вид:

Итак, `x=5`, `y=0`, условие `x-y>=0` выполняется. Значит, найденные пары чисел является решением исходной системы.

2 случай. Если `x-y =0`, `y>=0`;

4) `x =0`, `y>=0`, система имеет вид:

Оба полученные значения удовлетворяют заданным условиям: `1,5>=0`, `0>=0`.

2 случай. `x>=0`, `y =0`.

3 случай. `x =0` система имеет вид:

Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.

4 случай. `x -5/2`, то `|y+5/2|=y+5/2`; если `y то `|y+5/2|=-y-5/2`.

Выражение `y-1=0`, если `y=1`.

Если `y>1`, то `|y-1|=y-1`, а если `y =1`, то `|y-1|=y-1` и `|y+5/2|=y+5/2`, получаем уравнение:

Тогда `x=1/3(2*2+5)=3`. Число `2>1`, так что пара `(3;2)` является решением системы.

Пусть теперь `-5/2 хождения `y` получаем уравнение

Число `8/13` больше `(-5/2)`, но меньше, чем `1`, поэтому пара чисел `(27/13;8/13)` является решением системы.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 3x+y=7 \\ -5x+2y=3 \end \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin y = 7—3x \\ -5x+2(7-3x)=3 \end \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 2x+3y=-5 \\ x-3y=38 \end \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin 3x=33 \\ x-3y=38 \end \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.


источники:

http://zftsh.online/articles/5183

http://www.math-solution.ru/math-task/sys-lin-eq