Системы уравнений третьей степени и их решения

Системы уравнений высших степеней в математике с примерами решения и образцами выполнения

Системы двух уравнений первой и второй степени с двумя неизвестными:

Общий вид многочлена второй степени от двух переменных у и x, очевидно, следующий:

где а, b, с, d, е, f—данные числа. Общий вид системы уравнений с двумя неизвестными, состоящей из одного уравнения первой степени и одного уравнения второй степени, следующий:

Система такого вида легко решается способом подстановки. Именно, из второго уравнения можно выразить одно из неизвестных через другое и затем подставить в первое уравнение. В результате этого первое уравнение превратится в уравнение с одним неизвестным, вообще говоря, квадратное. Решив это уравнение, мы сможем определить затем и значения нового неизвестного.

При этом способе решения систем проверка полученных решений посредством подстановки в уравнение системы не обязательна и производится только для контроля правильности вычислений, ибо можно доказать, что при исключении одного неизвестного указанным способом лишних решений возникнуть не может.

Пример:

Решение:

Исключим из системы неизвестное у. С этой целью решим второе уравнение относительно у. Получим Затем подставим найденное выражение для у в первое уравнение. Получим

откуда после преобразований

и, следовательно, Соответствующие значения для у равны

Ответ. Система имеет два решения

Тот же прием исключения следует применять при решении систем трех уравнений с тремя неизвестными, если два уравнения имеют первую степень, третье квадратное. При этом из двух уравнений первой степени нужно выразить два неизвестных через третье неизвестное, и полученные выражения подставить в уравнение второй степени.

Таким же образом можно поступать при решении систем я уравнений с п неизвестными при любом я, если все уравнения, кроме одного квадратного, имеют первую степень.

Пример:

Решение:

Перепишем два последних уравнения системы в виде

Решая эту систему относительно х и у по обычным правилам, получим

Подставив эти выражения в первое уравнение, получим

Остается определить соответствующие значения для х и у, что делается подстановкой значений z₁, и z₂ в выражении х и у через z. Мы получим два решения системы:

Системы уравнений, решаемые особыми приемами

В гл. II, § 9 мы рассматривали системы уравнений вида

которые легко решаются при помощи формул Виета. Но, конечно, можно решать такие системы и способом исключения, описанным в предыдущем параграфе.

Часто встречающиеся системы уравнений вида

легко решаются методом исключения, но их можно решать и иначе. Именно, возведя в квадрат второе уравнение и вычитая из него первое, мы получим новое уравнение

которое является следствием данной системы. Объединив его с уравнением

мы получим систему, решаемую при помощи формул Виета.

Пример:

Решение:

Если х и у удовлетворяют уравнениям системы, то и следовательно, 2ху = — 8; ху = — 4. Таким образом, из данной системы следует система

для которой получаем два решения

Оба они удовлетворяют уравнениям исходной системы.

Еще проще решаются системы вида

Действительно, х² — y² = (x — у)(х + у), и потому если допустить, что х и у удовлетворяют обоим уравнениям системы, то (х—у) b = а, и следовательно, что вместе с уравнением х + у = b дает систему двух уравнений первой степени с двумя неизвестными, являющуюся следствием исходной системы, которую легко решить. Таким же образом решается и система вида

Пример:

Решение:

Если х и у удовлетворяют уравнениям системы, то

и следовательно, х + у =b. Решая систему

получим х = 4; v = 1.

Ответ. х = 4; v = 1.

Наконец отметим системы вида

Такие системы уравнений можно решить способом исключения, именно, в силу второго уравнения что при подстановке в первое уравнение дает уравнение относительно х, легко сводящееся к биквадратному.

Однако здесь следует рекомендовать другой прием. Именно, если к первому уравнению добавить, а затем вычесть удвоенное второе, то мы получим новую систему

являющуюся следствием исходной.

Но новая система легко решается, ибо из нее следует, что

и система распадается на 4 системы уравнений первой степени

Следует отметить, что сопоставление результатов решения рассмотренной системы по способу исключения и при помощи указанного искусственного приема приводит к тем же соотношениям, которые были получены из сопоставления двух способов решения биквадратного уравнения.

Системы двух уравнений второй степени, не содержащие линейных членов

Решение системы двух уравнений второй степени с двумя неизвестными общего вида

представляет значительные трудности. Именно, можно доказать, что решение такой системы зачастую сводится к решению уравнения четвертой степени, а нахождение решения общего уравнения четвертой степени представляет довольно сложную задачу, не входящую в рамки курса элементарной алгебры.

Для некоторых систем частного вида возможно элементарное решение. Важным примером таких систем являются системы двух квадратных уравнений, каждое из которых не содержит членов первой степени относительно неизвестных, т. е. системы вида

В этом случае система решается посредством уничтожения свободных членов. Это делается так. Первое уравнение умножается на f₁ второе на f и полученные уравнения вычитаются. Составленное так новое уравнение является следствием исходной системы и имеет вид Ах²+Вху+Су² =0, из которого следует, что

(если только у ≠ 0), откуда мы можем определить отношение

Найдя это отношение, мы можем выразить х через у и затем подставить в одно из уравнений исходной системы. Получившееся в результате неполное квадратное уравнение относительно у легко решается.

Нетрудно видеть, что если А ≠ 0 и хотя бы один из свободных членов в исходных уравнениях отличен от 0, то сделанное выше предположение у ≠ 0 не нарушает общности.

Действительно, если в уравнении Ах² + Вху + Су² == 0 при А ≠ 0 положим у = 0, то и х = 0. Но x = 0; y = 0 не может быть решением исходной системы, если хотя бы один из ее свободных членов отличен от нуля.

Если же коэффициент А = 0, то решение вспомогательного уравнения Вху + Су² = 0 только упрощается, для решения достаточно вынести за скобку у и приравнять к нулю каждый множитель.

Пример:

Решение:

Умножив первое уравнение на 7 и второе на 3, получим после вычитания

Таким образом, х = 22у или х = 2у. Дальнейшее очевидно. Доведя решение до конца, получим четыре решения системы

Решение систем уравнений высших степеней

Задача о решении системы уравнений высших степеней с несколькими неизвестными в общем случае является очень трудной, часто не допускающей решения средствами элементарной алгебры. Однако во многих случаях, комбинируя известные методы решения уравнений и систем уравнений — метод сложения и вычитания, исключения неизвестного с помощью подстановки, введения нового неизвестного— удается найти путь к решению системы. Но в каждой отдельной задаче приходится использовать ее частные особенности для того, чтобы найти удачный метод решения. Рассмотрим несколько примеров.

Пример:

Решить систему уравнений.

Решение:

Способ 1. Из второго уравнения находим, что у = 3 — х. Подставив в первое уравнение, получаем

и, после упрощений,

Соответствующие значения для у будут такими:

Система имеет два решения.

Способ 2. Представим х³ + y³ = 18 как

Принимая во внимание второе уравнение, получим 27 — 9xy = 18, откуда ху = 1. Система

есть следствие исходной, но и исходная есть следствие преобразованной, ибо если х + у = 3; ху = 1, то

Решая преобразованную систему при помощи формул Виета, получим те же два решения:

Пример:

Решение:

Исключение одной из неизвестных величин приводит к решению уравнения четвертой степени, в котором все коэффициенты отличны от нуля. Поэтому лучше избежать этого пути. Это легко сделать, введя новую неизвестную z = xy. Тогда

Таким образом, для z получаем уравнение

откуда z₁ = 47; z₂ = 3.

Итак, данная система расщепилась на две системы:

первая из которых не имеет действительных решений, а вторая имеет следующие решения:

Указанный прием удобно применять к системам двух уравнений с двумя неизвестными, в случае если каждое из уравнений симметрично относительно х и у, т. е. если уравнения не изменяются при перемене х и у местами.

Пример:

Решить систему уравнений:

Решение:

Перемножив уравнения системы, получим

откуда xyz = ±30. Но так как ху = 5, то отсюда следует, что =5z±30 и z = ±6. Теперь х и у легко определить из второго и третьего уравнений системы. Мы приходим к двум решениям:

Пример:

Решить систему уравнений

Решение:

Возвысив обе части первого уравнения в квадрат, получим

Вычитая из этого уравнения второе уравнение данной системы, получим 2x³y³ = 686, откуда (xy)³ = 343; ху = 7. Теперь из первого уравнения данной системы находим, что Итак, решение данной системы свелось к решению системы

Пример:

Решить систему уравнений

Решение:

В первом уравнении раскроем скобки в каждом множителе. Затем поделим обе части обоих уравнений на ху. Получим

Теперь введем новые неизвестные В новых неизвестных преобразованная система имеет такой вид:

Эта система легко решается. Получаем:

Далее находим значения для х и у из уравнений

Всего получим восемь решений:

Многообразие приемов, которые могут применяться при решении систем уравнений высших степеней, неисчерпаемо, и тем не менее найти путь к решению данной системы удается далеко не всегда. Важно проявлять изобретательность при решении системы в тех случаях, когда это возможно.

Графическое решение уравнений с одним неизвестным

Как уже было сказано, алгебраические методы решения систем уравнений далеко не всегда применимы. Но для целей практики бывает важно находить решения систем уравнений хотя бы приближенно. Эта цель хорошо достигается применением графических методов. Сначала рассмотрим применение графиков к приближенному решению одного уравнения с одним неизвестным.

Пусть дано уравнение х²- 4x+1 = 0. Для того чтобы графически решить такое уравнение, рассматриваем неизвестное х как независимое переменное, а левую часть уравнения как функцию этой переменной, т. е. введем в рассмотрение функцию y = x²-4x+1

Решить предложенное уравнение — значит узнать, при каких значениях независимой переменной х функция у обращается в нуль.

Точки графика, соответствующие таким значениям независимой переменной, лежат на оси абсцисс, ибо ордината каждой такой точки равна нулю. Следовательно, интересующие нас точки графика являются точками пересечения графика с осью абсцисс, а корни уравнения x²-4x+1=0 являются абсциссами этих точек пересечения. При этом абсцисса каждой точки пересечения графика с осью абсцисс является корнем уравнения x²-4x+1=0

Строим график функции y = x²-4x+1 Он имеет вид параболы с вершиной в точке (2,-3) (рис. 68). По чертежу находим, что В действительности

Совершенно такие же рассуждения можно применить к любому уравнению .у —0, где у есть алгебраическое выражение от неизвестной х. Именно, для графического решения такого уравнения нужно построить график выражения у, рассматриваемого как функция от переменной х, и найти точки пересечения этого графика с осью абсцисс. Абсциссы точек пересечения будут корнями уравнения. Конечно, при графическом решении уравнений корни получаются приближенно и довольно грубо, так как на чертеже произвести измерение абсцисс с высокой степенью точности невозможно.

Пример:

Решение:

Строим график функции у = x³ — 4x + 1, вычислив предварительно таблицу значений:

По результатам этих вычислений мы видим, что при изменении х от —3 до —2 функция переходит от отрицательных значений к положительным, на участке от 0 до 1 переходит от положительных значений к отрицательным и на участке от 1 до 2 снова от отри-
нательных значений к положительным. На этих участках и следует ожидать, что график пересечет ось абсцисс.

Проводим вычисления для некоторых промежуточных значений х, взятых на этих участках с целью уточнения хода функции:

Теперь построим график по всем вычисленным точкам, соединив их плавной линией (рис. 69).

Из этого чертежа мы получаем:

Для того чтобы уточнить значения корней, следует построить в бoльшем масштабе участки графика, примыкающие к корням, вычислив дополнительно значения функции на этих участках. Например, для уточнения корня х₃ проведем следующее вычисление:

Изобразим эти точки на чертеже, приняв большую единицу масштаба (рис. 70).

На таком малом участке изменения х мы вправе считать, что график очень близок к прямой линии. Исходя из этого предположения, получим

Графическое решение систем двух уравнений с двумя неизвестными

Пусть дана система уравнений с двумя неизвестными х и у. Каждое из этих уравнений, взятое отдельно, определяет зависимость между величинами х и у.

Построим на одном чертеже графики этих зависимостей. Числа (x₀y₀), образующие решение системы, должны удовлетворять обоим уравнениям системы, а следовательно, точка с координатами (х₀ у₀) должна лежать на графиках обеих зависимостей, т. е. должна являться точкой пересечения этих графиков.

Обратно, координаты (x₀у₀) любой точки пересечения построенных графиков удовлетворяют обоим уравнениям системы, т. е. образуют решение системы.

Таким образом, для того чтобы графически решить систему двух уравнений с двумя неизвестными, нужно построить график для каждого из уравнений и найти точки пересечения этих графиков. Координаты каждой точки пересечения образуют решение системы.

Пример:

Решить графически систему уравнений

Решение:

Алгебраическое решение этой системы затруднительно. Хотя неизвестное у и легко исключается посредством подстановки в первое уравнение его выражения через дг из второго уравнения, но в результате такого исключения получается уравнение четвертой степени относительно х, решение которого выходит за рамки элементарного курса алгебры.

Обратимся к построению графиков. Графиком зависимости х² + у² = 9 является, как мы видели (гл. III, § 3, третий пример), окружность с центром в начале координат и радиусом, равным 3. Графиком зависимости у= 2х² — 2х — 3 является парабола, которую легко построить по таблице значений (рис. 71). Графики пересекаются в четырех точках, координаты которых суть приближенно (—1,2; 2,7); (0; —3); (1,1; —2,8) и (2,2: 2,0).

Следовательно, данная система имеет четыре решения

Второе решение оказывается точным. Остальные три — приближенные.

Графическое решение системы двух уравнений с двумя неизвестными почти не сложнее графического решения одного уравнения с одним неизвестным, а иногда даже проще.

Поэтому часто бывает полезно преобразовать посредством введения нового неизвестного одно уравнение с одним неизвестным в систему двух уравнений с двумя неизвестными, а затем решать эту систему графически. При таком преобразовании следует заботиться о том, чтобы построение графиков обоих уравнений полученной системы было как можно проще.

Рассмотрим несколько примеров на применение этого приема.

Пример:

Решить графически уравнение

Решение:

Представим предложенное уравнение в виде x²=x+1. Мы видим, что в левой и правой частях уравнения находятся некоторые функции от х. Решить уравнение — значит найти, при каких значениях независимого параметра обе функции принимают равные значения. Графически это означает, что нужно найти абсциссы точек пересечения графиков функций у = х² и у =х 1.

Действительно, если при х = а а² = а + 1, то это значит, что точка (а, а²) совпадает с точкой (a, a+1) и, следовательно, принадлежит как графику функции у = х², так и графику функции у = х + 1.

Очевидно и обратное. Если графики функций у = х² и у = x + 1 пересекаются в точке (а, b), то b = a² = a + 1 и, следовательно, при х = а обе функции принимают равные значения. Все сказанное можно коротко изложить так.

Вводим новую неизвестную y = х². Тогда данное уравнение переходит в уравнение у — х—1= 0, которое вместе с введенной зависимостью дает систему

Графиком зависимости у = х² является .парабола, графиком зависимости у = х + 1— прямая линия (рис. 72). Решение задачи дают абсциссы точек пересечения. Они равны приближенно:

Любое приведенное квадратное уравнение х² + рх + q = 0 может быть решено тем же образом, посредством преобразования в систему

Это удобно тем, что графиком первой зависимости является одна и та же парабола, а графиком второй зависимости является прямая линия, которую очень легко построить в каждом частном случае по двум точкам. Поэтому, тщательно построив в большом масштабе параболу у=х3, мы получаем возможность быстро решать любое приведенное квадратное уравнение.

Подобным образом для решения кубического уравнения, имеющего вид х³ + рх + q = 0, достаточно заготовить график функции у = х³. Абсциссы точек пересечения этого графика с прямой у + рх + q = 0 дают корни уравнения x³ + + q = 0.

Пример:

Превратив в систему, решить графически уравнение

Решение:

Это делают приемом, указанным выше. Однако это можно сделать и иначе. Именно, перепишем уравнение в виде х(х² — 4)+1=0

и положим х² — 4 = у. Уравнение заменится системой

Графиком первого уравнения системы является парабола, графиком второго — гипербола (рис. 73). Абсциссы точек пересечения суть

Этим приемом можно решить любое кубическое уравнение

Графиком первого уравнения является парабола, графиком второго — гипербола.

Решение уравнения четвертой степени ах⁴ + bх² + сх + d = 0 при с ≠ 0 легко сводится к определению точки пересечения двух парабол.

Для этого вводим новое неизвестное у = х² У и уравнение заменяем системой

Графиком первого уравнения является парабола с вершиной в начале координат и осью, совпадающей с осью ординат. Графиком второго уравнения тоже является парабола, но только ее ось параллельна оси абсцисс. Действительно, решив второе уравнение относительно х, мы получим

т. с. х является квадратичной функцией от у, графиком которой является парабола с осью, параллельной оси абсцисс.

Из рассмотренных примеров ясно, что каждое данное уравнение с одним неизвестным можно преобразовать а систему двух уравнений с двумя неизвестными многими способами и при выборе какого-нибудь способа следует заботиться о наиболее выгодном расположении графиков на чертеже.

Уточнение корня уравнения или решения системы нелинейных уравнений, исходя из грубого приближения

При графическом решении корень уравнения или решение системы уравнение определяется лишь грубо приближенно. Уточнение результата за счет увеличения масштаба не очень эффективно, так как повышение точности требует пропорционального увеличения масштаба. Например, чтобы определить новую значащую цифру после занятой в десятичном разложении корня, т. е. увеличить точность в 10 раз, нужно и масштаб увеличить в 10 раз.

Однако существует весьма хорошо действующий алгебраический способ для подобного рода уточнения. Мы не будем излагать его в общем виде, а ограничимся только рассмотрением примеров его применения.

Пример:

Для уравнения x³ — 4x + 1= 0 известно приближенное значение одного из корней х ≈1,8. Требуется вычислить этот корень с большей точностью.

Решение:

Поступаем так. Положим x =1,8 + h, где h — новая неизвестная. Мы можем быть уверены, что h есть маленькое число, во всяком случае меньшее, чем 0,1. Подставив в уравнение вместо х его выражение через h, получим

Так как h² меньше h во столько же раз, во сколько h меньше единицы, для приближенного вычисления h отбросим в полученном уравнении члены с h² и h³. Получим

Для дальнейшего уточнения мы можем еще раз применить тот лее прием. Положим x≈1,86 + h₁,. Для h₁ получим, отбрасывая члены, содержащие h₁² и h₁³, приближенное уравнение

(При этом нет надобности вычислять коэффициенты при h₁² и h₁³ , ибо соответствующие члены мы все равно отбрасываем.) Отсюда h≈ 0,0008 и, следовательно,x ≈ 1,8608.

Продолжая этот прием, мы можем получить значение корня уравнения с любой степенью точности.

В общем виде идея метода такова. Если х₀ есть приближенное значение корня данного уравнения, мы полагаем в уравнении x= x₀ + h и в полученном уравнении относительно h отбрасываем члены, содержащие h выше, чем в первой степени, и решаем приближенно получившееся уравнение первой степени относительно h. Тогда число x₁ = x₀ + h оказывается, вообще говоря, значительно лучшим приближением к корню, чем исходное приближение х₀. В случае надобности процесс можно повторить.

Пример:

Для одного решения системы уравнений

известны приближенные значения х ≈ 2,2, у ≈ 2,0. Найти решение с большей точностью.

Решение:

Будем действовать тем же способом, как при уточнении корня одного уравнения с одним неизвестным. Именно, положим x = 2,2 + h; .у = 2,0 + к и, подставив в уравнение, отбросим все члены, содержащие h², k², hk, так как эти величины значительно меньше самих h и k. Получим

Решив эту систему, получим h ≈ — 0,03, k ≈ 0,07. Таким образом, уточненными значениями для х и у являются значения

Для дальнейшего уточнения можно повторить тот же процесс.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Иррациональные уравнения с кубическими радикалами

Разделы: Математика

Тема: «Иррациональные уравнения вида ,

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов:

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб.

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению ,

,

,

Пример 2. Решить уравнение .

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению

,

,

,

и рассмотрим полученное уравнение как квадратное относительно одного из корней

,

,

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка:

Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

,

(незначительная модификация известной формулы), тогда

Пример3. Решить уравнение .

Возведём уравнение в куб с использованием формул, приведённых выше.

,

Но выражение должно быть равно правой части. Поэтому имеем:

, откуда

.

Теперь при возведении в куб получаем обычное квадратное уравнение:

, и два его корня

,

Оба значения, как показывает проверка, правильные.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение .

Возводя, как и ранее, обе части в третью степень, имеем:

.

Откуда (учитывая, что выражение в скобках равно ), получаем:

, значит

. Получаем, .Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ: .

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство влечёт равенство . Заменим с на –с, получим:

и .

Нетрудно проверить тождество

,

Итак, если , то либо , либо . Уравнение можно представить в виде , .

Заменяя с на –с, получаем: если , то либо , либо

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение .

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда:

откуда очевидно, что

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Легко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ: Корней нет.

Пример 6. Решить уравнение .

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда

или

Возвращаясь к исходной переменной имеем:

х=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
  • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
  • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
  • Функция вида возрастает при к>0 и убывает при к 30.05.2009


источники:

http://zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/

http://urok.1sept.ru/articles/532757