Скачать бесплатно уравнения и неравенство

Уравнения и неравенства

Библиотечка
физико-математической школы
Выпуск 5

PEKЛAMA: 500 РАДИОСПЕКТАКЛЕЙ НА SD 64GB — ГДЕ.
BAШA ПОМОЩЬ ПРОЕКТУ: ЗАНЕСТИ КОПЕЕЧКУ — КУДА.

ОГЛАВЛЕНИЕ

Глава I. Введение
§ 1. Числа
§ 2. Высказывания 11
§ 3. Функции 15

Глава II. Уравнения 23
§ 4. Числовые равенства 20
§ 5. Уравнения 24
§ 6. Связь между уравнениями 28
§ 7. Примеры 42
§ 8. Корни многочленов 48
§ 9. Графическое исследование уравнений 51
§ 10. Системы уравнений 56

Глава III. Неравенства 64
§ 11. Свойства неравенств 64
§ 12. Условные неравенства 66
§ 13. Неравенства с одним неизвестным 72
§ 14. Неравенства с двумя неизвестными 78
§ 15. Уравнения и неравенства с параметрами 81
§ 16. Графический метод 86
Краткие итоги 93

ПРЕДИСЛОВИЕ
Решить уравнение, решить неравенство. С этим сортом задач мы сталкиваемся очень часто. Пишем подряд какие-то формулы, радуемся, когда они становятся проще и проще, наконец, видим желанное равенство, например х=100, и объявляем, что уравнение решено. Это напоминает прополку грядки человеком, которому не сказали, что на ней должно расти.
Цель этой книжки — помочь научиться пропалывать грядку так, чтобы все нужное оставить, а все лишнее — выдернуть. Сначала мы познакомимся со всеми растениями, которые будут расти на нашей грядке, научимся их быстро узнавать, классифицировать, удобно обозначать. Этому посвящена довольно длинная вводная глава. Затем мы попробуем точно сформулировать, чего же мы добиваемся, что мы понимаем под словами «решить уравнение», «решить неравенство» и т. п., обдумаем смысл тех операций, тех преобразований, которые мы используем для достижения цели.
Все это вместе довольно легко, потому что сложной теории здесь нет, большая часть книжки состоит просто из примеров. С другой стороны, хотя заниматься мы будем самыми привычными вещами, иногда привычки придется ломать и создавать новые.
Круг рассмотренных вопросов намеренно ограничен: разбираются почти исключительно алгебраические уравнения и неравенства, совсем мало места отведено интересным и важным задачам, касающимся доказательства неравенств, которые, как мы надеемся, будут включены в одну из книжек этой серии.
Книжка носит ярко выраженный «технический» характер. В ней много задач, требующих только хорошего владения школьным материалом, близких к конкурсным задачам при поступлении в институт. Примеры, показываемые в тексте, требуют внимательного разбора с карандашом в руке.
Книга рассчитана на школьников 9—10 классов, учителей и лиц, самостоятельно занимающихся математикой.
Я глубоко благодарен Н. Б. Васильеву, Д. А. Владимирову, В. Л. Гутенмахеру, Ю. И. Ионину, Д. К. Фаддееву, прочитавшим рукопись и много сделавшим для ее улучшения.

§ 1. Числа
В этой книге мы всюду имеем дело с вещественными числами. Мы не будем здесь давать определение того, что такое вещественное число. Вместо этого просто перечислим те свойства чисел, которыми мы пользуемся.
Что же мы обычно делаем с числами?
Прежде всего, мы совершаем арифметические действия — сложение и умножение, с помощью которых мы можем из двух чисел получить третье — их сумму или произведение.
Эти действия обладают рядом свойств. Основными свойствами сложения являются следующие: (…)
Число 0 по отношению к действиям умножения и деления является исключительным. Произведение любого числа на нуль равно нулю. Деление же на нуль не имеет смысла (не определено).
Важным свойством умножения является следующее: если произведение двух чисел равно нулю, то хотя бы один из сомножителей равен нулю.
Множество всех вещественных чисел удобно представлять себе как множество всех точек некоторой прямой, называемой в таком случае координатной прямой или числовой осью. Соответствие между числами и точками числовой оси при обучении математике не менее существенно, чем, например, соответствие между буквами и звуками при обучении чтению. Оно лежит в основе языка, на котором излагаются целые главы математики. Этот язык настолько привычен, что мы часто вместо слова «число» говорим «точка» и наоборот. Поэтому, например, мы не будем старательно различать координатную прямую (числовую ось) и числовую прямую, т. е. само множество вещественных чисел 6.
Напомним, что для того, чтобы каждая точка оси была изображением некоторого числа, одних рациональных чисел оказывается недостаточно. Для того чтобы сплошь заполнить числами всю прямую, к множеству рациональных чисел присоединяют новые, иррациональные числа. Вместе все эти числа, рациональные и иррациональные, носят название вещественных или действительных чисел.
В этом «полном» множестве вещественных чисел уже можно определять такие операции, как извлечение корня, возведение в произвольную степень, взятие логарифма (правда, все эти операции безоговорочно выполнимы только для положительных чисел), и другие. Остановимся коротко на операции извлечения корня, необходимой при решении алгебраических уравнений.
(…)
Кроме операций над числами нам приходится рассматривать отношения между ними — отношение равенства (совпадают они между собой или нет) и отношение порядка, или, как мы будем часто говорить, отношение «больше — меньше». (…)
Отношение порядка между числами очень наглядно представляется геометрически. Если положительное направление оси выбрано слева направо, то точка, соответствующая большему числу, расположена правее. Свойства отношения «больше — меньше» будут изучены подробно в главе II.
А пока займемся тем, что введем обозначения для некоторых множеств на прямой. Эти обозначения будут несколько отличаться от принятых в настоящее время в школьных учебниках. Однако именно они применяются в большей части современной математической литературы, и учащимся полезно с ними познакомиться.
(…)

Основные понятия
1. Числовое равенство (числовое неравенство) — это высказывание вида (…)
2. У равнение (условное неравенство) — это переменное высказывание вида (…)
3. Область определения уравнения (неравенства) — множество значений аргумента, при которых определены все функции, входящие в уравнение (неравенство).
4. Решение, или корень, уравнения (неравенства) — значение аргумента, при подстановке которого получается верное равенство (верное числовое неравенство).
5. Решить уравнение (неравенство) — найти множество его решений.
6. Уравнения (неравенства) равносильны — это значит, что множества их решений совпадают.

Советы
1. Процесс решения уравнения состоит обычно в получении цепочки следствий — уравнений, множества решений которых содержат множества решений предыдущих. Получив в качестве следствия уравнение, множество решений которого нам известно, можно либо сделать проверку, либо проследить за равносильностью переходов. Так же решают и системы уравнений.
2. При решении неравенств и доказательстве тождеств нужно пользоваться равносильными переходами.
3. Переход с помощью некоторой операции от одного неравенства (уравнения) к другому заведомо является равносильным, если для этой операции имеется «обратная». Например, можно обе части умножить на положительную функцию, прибавить к ним любую функцию, применить некоторую монотонно возрастающую функцию.
4. Решение следует начинать с того, что выписать все ограничения на область определения.
5. Преобразуя одну часть уравнения (неравенства) или переходя от одного уравнения (неравенства) к другому, нужно обязательно следить за тем, чтобы выполняемые операции имели смысл при всех значениях переменных из области определения.
6. Иногда полезно рассмотреть несколько «случаев»: разбить области определения на несколько множеств, на каждом из которых удобно совершить переход к более простому уравнению (неравенству).
7. Если нужно найти множество точек, удовлетворяющих одновременно нескольким условиям, записываемым уравнениями, неравенствами и т. п. (решить систему),то надо взять пересечение множеств точек, удовлетворяющих отдельным условиям.
Если нужно найти множество точек, удовлетворяющих хотя бы одному из нескольких условий (рассмотреть несколько возможных случаев), то надо взять объединение множеств точек, удовлетворяющих отдельным условиям.
8. Очень часто, особенно при решении неравенств и при необходимости перебирать много частных случаев, помогают графические иллюстрации.
9. При решении уравнений и неравенств с параметром надо в ответе перечислить решения при всех значениях параметра.
10. Несколько советов по поводу решения задач на составление уравнений (с параметрами): не забудьте выписать все условия и ограничения; получив ответ, проверьте, все ли слагаемые в сумме имеют одинаковую размерность (нельзя, например, складывать длину и скорость); проверьте ответ в каком-либо простом частном случае; подставьте простое численное значение параметра и посмотрите, правдоподобный ли получился результат.

Алгебраические уравнения и неравенства, Методическое пособие по математике для подготовительных курсов, Петрович А.Ю., 2008

Алгебраические уравнения и неравенства, Методическое пособие по математике для подготовительных курсов, Петрович А.Ю., 2008.

По материалам занятий, проводимых на подготовительных курсах в (Московском физико-техническом институте (МФТИ),приведены на доступном уровне основные методы решения алгебраических уравнений и неравенств. Большинство разобранных примеров и задач для самостоятельного решения предлагались на письменных вступительных экзаменах в МФТИ.

Для абитуриентов, слушателей подготовительных курсов, старшеклассников.

§ 1. Целые алгебраические уравнения
Целыми называются уравнения вида Р(n) = 0, где Р(х) — многочлен. Хорошо известно решение линейных и квадратных уравнений, т. е. уравнений первой и второй степени. Существуют общие формулы для решения уравнений третьей и четвертой степеней, но они очень громоздки, требуют извлечения корней из комплексных чисел и практически невыгодны. Поэтому уравнения третьей и более высоких степеней, если они не относятся к одному из стандартных типов (биквадратные, возвратные и т. д.), обычно решают так.

§2. Рациональные уравнения
Рациональными называются уравнения вида R (х) = 0, где R(x) — рациональная функция, значения которой получаются из значения аргумента х и постоянных действительных чисел при помощи четырех арифметических действий. Такая функция может быть представлена в виде отношения двух многочленов. При решении рационального уравнения нужно учитывать ОДЗ (область допустимых значений) — множество значений х, которые обращают в нуль знаменатели возникающих выражений.

§3. Рациональные неравенства
Рациональными называются неравенства вида R (х) > 0; R(x) 0, R(x) Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Алгебраические уравнения и неравенства, Методическое пособие по математике для подготовительных курсов, Петрович А.Ю., 2008 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Учебное пособие «Уравнения и неравенства с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…. 16-18

Задания для самостоятельной работы…………………………. 21-28

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

Выделить особое значение — это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

Если а ¹ 0, то при любой паре параметров а и b оно имеет единственное решение х=.

Если а = 0, то уравнение принимает вид : 0х= b . В этом случае значение

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0. Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax b ( а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а . Аналогично для неравенства

ах b множество решений – промежуток (-;), если a > 0, и (; +), если а

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение .

Если а = 0, то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = — решение уравнения.

Ответ: при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3), рассмотрим два случая:

Если а= -3, то любое действительное число х является корнем уравнения (1). Если же а ¹ -3, уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение: Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а — 2) х = а 2 – 4а +4

2(а — 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =. По условию х > 1, то есть >1, а > 4.

Ответ: При а <2>U (4;∞).

Пример 4. Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

а =,

y = a – семейство горизонтальных прямых;

y = графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0, то уравнение решений не имеет. Если а ≠ 0, то уравнение имеет одно решение.

Пример 5. С помощью графиков выяснить, сколько корней имеет уравнение:

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1— один корень

при | а|≤1 – уравнение корней не имеет.

Решение : ах + 4 > 2х + а 2 (а – 2) х > а 2 – 4. Рассмотрим три случая.

а=2 . Неравенство 0 х > 0 решений не имеет.

а > 2. (а – 2) х > ( а – 2)(а + 2) х > а + 2

а (а – 2) х > ( а – 2)(а + 2) х а + 2

Ответ. х > а + 2 при а > 2; х при а при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² — 4 ac , (²- ас)

2) формул корней квадратного уравнения: х 1 =, х 2 =,

1,2 = )

Квадратными называются неравенства вида

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 2 ), то при а > 0 он положителен на множестве (-; х 2 )( х 2; +) и отрицателен на интервале

1 ; х 2 ). Если а 1 ; х 2 ) и отрицателен при всех х (-; х 1 )( х 2; +).

Пример 1. Решить уравнение ах² — 2 (а – 1)х – 4 = 0.

Это квадратное уравнение

Решение: Особое значение а = 0.

При а = 0 получим линейное уравнение 2х – 4 = 0. Оно имеет единственный корень х = 2.

При а ≠ 0. Найдем дискриминант.

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ — 1 , то D >0 . По формуле корней получим: х=;

х 1 =2, х 2 =.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ — 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8— графиком является парабола;

y — семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а -9, уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х ?

Решение. Квадратный трехчлен положителен при всех значениях х, если

, откуда следует, что a > 6 .

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение = 0

Это дробно- рациональное уравнение

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

При а = -2 корней нет.

Пример 2 . Решить уравнение= (1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² — 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² — (а² — 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а — 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1+1=0, х 1+2=0, х2+1=0, х2+2=0.

Если х 1+2=0, то есть (а+1)+2=0, то а = — 3. Таким образом, при а = — 3, х1 посторонний корень уравнения. (1).

Если х2+1=0, то есть (а – 3) + 1= 0, то а = 2. Таким образом, при а = 2 х2 посторонний корень уравнения (1).

Если х2+2=0, то есть (а – 3) + 2 = 0, то а=1. Таким образом, при а = 1,

х2 — посторонний корень уравнения (1).

В соответствии с этим при а = — 3 получаем х = — 3 – 3 = -6;

при а = — 2 х = -2 – 3= — 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2, то х= -5; 3) если а= 0, то корней нет; 4) если а= 1, то х= 2; 5) если а=2, то х=3; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х1 = а + 1, х2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида = g ( x ) равносильно системе

Неравенство f ( x ) ≥ 0 следует из уравнения f ( x ) = g 2 ( x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

≤ g(x) ≥g(x)

Пример 1. Решите уравнение = х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе .

При а = 2 первое уравнение системы имеет вид 0 х = 5, то есть не имеет решений.

При а≠ 2 х=. Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1: ≥ — 1, ≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х= , при уравнение решений не имеет.

Пример 2. Решить уравнение = а (приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Пример 3 . Решим неравенство (а+1)

Решение. О.Д.З. х ≤ 2. Если а+1 ≤0, то неравенство выполняется при всех допустимых значениях х. Если же а+1>0, то

(а+1)

откуда х (2- 2

Ответ. х (- ;2 при а ( —;-1, х (2- 2

при а ( -1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a x= (-1) n arcsin a+πn, n Z, ≤1, (1)

Cos x = a x = ±arccos a + 2 πn, , n Z, ≤1. (2)

Если >1, то уравнения (1) и (2) решений не имеют .

tg x = a x= arctg a + πn, n Z, aR

ctg x = a x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a arcsin a + 2 πn Z,

при a xR ; при a ≥ 1, решений нет.

при а≤-1, решений нет; при а >1, xR

3. cos x > a arccos a + 2 πn x arccos a + 2 πn , n Z ,

при а xR ; при a ≥ 1 , решений нет.

при а≤-1 , решений нет ; при a > 1, x R

5. tg x > a, arctg a + πnZ

Пример1. Найти а, при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1 4≤ а ≤ 6, а уравнение cosx = — а-1 при условии -1≤ -1- а ≤ 1 -2 ≤ а ≤0.

Ответ. а -2; 0 4; 6

Пример 2. При каких b найдется а такое, что неравенство + b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а π /2 при а ≥0.

§ 6. Показательные уравнения и неравенства

1. Уравнение h ( x ) f ( x ) = h ( x ) g ( x ) при h ( x ) > 0 равносильно совокупности двух систем и

2. В частном случае ( h ( x )= a ) уравнение а f ( x ) = а g ( x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f ( x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f ( x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f ( a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f ( x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х = имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0 8 х >1 >1 >0, откуда a (1,5;4).

Ответ. a (1,5;4).

Решение. Рассмотрим три случая:

1. а . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых х R .

3. а > 0 . a 2 ∙2 x > a 2 x > x > — log 2 a

Ответ. х R при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g ( x ) ≤ log f ( x ) h ( x ) равносильно совокупности двух систем: и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение. Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

log х – 2 = 4 – log a x log х + log a x – 6 = 0, откуда log a x = — 3

х = а -3 и log a x = 2 х = а 2 . Условие х = а 4 а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а ( 0; 1) (1; ).

Пример 2. Найдите наибольшее значение а, при котором уравнение

2 log + a = 0 имеет решения.

Решение. Выполним замену = t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0 а.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log ( x 2 – 2 x + a ) > — 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ± и х 3,4 = 1 ±.

Критические значения параметра : а = 1 и а = 9.

Пусть Х1 и Х2 – множества решений первого и второго неравенств, тогда

Х 1 Х 2 = Х – решение исходного неравенства.

При 0 a 1 = (- ;1 — )( 1 + ; +), при а > 1 Х 1 = (-;+).

При 0 a 2 = (1 —; 1 +), при а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0 a ≤1 Х = (1 —;1 — )(1 + ;1 +).

3. a ≥ 9 Х – решений нет.

Высокий уровень С1, С2

Пример 1. Найдите все значения р, при которых уравнение

р ∙ ctg 2 x + 2 sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ ( — 1) + 2 sinx + p = 3, sinx = t , t , t 0.

p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f ( y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f ( x ) на . у / = 6 t – 6 t 2 , 6 t — 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t , E ( f ) = ,

При t , E ( f ) = , то есть при t , E ( f ) = .

Чтобы уравнение 3 t 2 – 2 t 3 = p ( следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E ( f ), то есть p .

Ответ. .

При каких значениях параметра а уравнение log (4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4 x 2 – 4 a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

4∙ 0 2 — 4 a + a 2 +7 = (0 2 + 2) 2 ,

1) a 1 = 1. Тогда уравнение имеет вид: log (4 x 2 +4) =2. Решаем его

4 x 2 + 4 = (х 2 + 2) 2 , 4 x 2 + 4 = х 4 + 4 x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log (4 x 2 +4) =2 х = 0 – единственный корень.

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – ( р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7рх 2 + 2х 2 – 14 рх — 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – ( р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = — 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2 р = — 1; если х 1 = х 2 = — 1, то р + 3 = — 1 – 1 = — 2 р = — 5. Проверим являются ли корни уравнения х 2 – ( р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = — 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ ( — 1) ∙ 1 – 3 ∙ 1 + 21 ∙ ( — 1) = 0 ≤ 0 – верно; для случая р = — 5, х1 = х2 = — 1 имеем ( — 1) 3 – 7 ∙ ( — 5) ∙ ( -1) 2 + 2 ∙ (-1) 2 – 14 ∙ ( -5) × ( — 1) – 3 ∙ ( — 1) + 21∙ ( -5 ) = — 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = — 1 и р = — 5.

Пример 4. Найдите все положительные значения параметра а, при которых число 1 принадлежит области определения функции

у = ( аа ).

Решение. у = ( аа ). Область определения данной функции составляют все значения х, для которых аа ≥ 0.

Если значения х = 1 принадлежит области определения, то должно выполняться неравенство а а ≥ 0, а а (1)

Таким образом, необходимо найти все а > 0, удовлетворяющие неравенству (1).

1) а = 1 удовлетворяет неравенству (1).

2) При а > 1 неравенство (1) равносильно неравенству 2 + 5аа 2 +6,

а 2 — 5а + 4 ≤ 0. Решение этого неравенства: 1≤ а ≤ 4. Учитывая условие а >1, получим 1

а 2 — 5а + 4 ≥ 0. Его решение а ≤ 1; а ≥ 4 с учетом условия 0


источники:

http://obuchalka.org/2013032870411/algebraicheskie-uravneniya-i-neravenstva-metodicheskoe-posobie-po-matematike-dlya-podgotovitelnih-kursov-petrovich-a-u-2008.html

http://infourok.ru/uchebnoe_posobie_uravneniya_i_neravenstva_s_parametrami-415388.htm