Скачать методы решения логарифмических уравнений

«Способы решения логарифмических уравнений».
план-конспект урока по алгебре (10 класс) на тему

План конспект и презентация к двум урокам алгебры в 10 классе. на этих уроках ребята знакомятся с 9 способами решения логарифмических уравнений и закрепляют их в решении различных упражнений.

Скачать:

ВложениеРазмер
statya.doc208 КБ
prezentatsiya.pptx447.71 КБ

Предварительный просмотр:

Тема: «Способы решения логарифмических уравнений».

Плотникова Татьяна Владимировна

МБОУ «СОШ №1 г.Суздаля»

Алгебра и начала математического анализа

«Способы решения логарифмических уравнений», 2 часа

Ш.А. Алимов, Ю.М. Колягин и др. / М. Просвещение 2014

Цель урока: повторить знания учащихся о логарифме числа, его свойствах; изучить способы решения логарифмических уравнений и закрепить их при выполнении упражнений.

— обучающие: повторить определение и основные свойства логарифмов, уметь применять их в вычислении логарифмов, в решении логарифмических уравнений;

-развивающие: формировать умение решать логарифмические уравнения;

-воспитательные: воспитывать настойчивость, самостоятельность; прививать интерес к предмету

Тип урока: урок изучения нового материала.

Необходимое техническое оборудование: компьютер, проектор, экран.

Структура и ход урока:

— Здравствуйте, садитесь! Сегодня тема нашего урока «Решение логарифмических уравнений», на котором мы познакомимся со способами их решения, используя определение и свойства логарифмов. (слайд № 1)

Закрепление понятия логарифма, повторение его основных свойств и свойств логарифмической функции:

1. Разминка по теории:

1. Дайте определение логарифма. (слайд № 2)

2. От любого ли числа можно найти логарифм?

3. Какое число может стоять в основании логарифма?

4. Функция y=log 0,8 x является возрастающей или убывающей?Почему?

5. Какие значения может принимать логарифмическая функция?

6. Какие логарифмы называют десятичными, натуральными?

7. Назовите основные свойства логарифмов. (слайд № 3)

8. Можно ли перейти от одного основания логарифма к другому? Как это сделать? (слайд № 4)

2. Работа по карточка(3-4 ученика):

Карточка №1: Вычислить: а) log 6 4 + log 6 9 =

б) log 1/3 36 – log 1/3 12 =

Решить уравнение: log 5 х = 4 log 5 3 – 1/3 log 5 27

Вычислить: а) log211 – log244 =

б) log1/64 + log1/69 =

Решить уравнение: log 7 х = 2 log 7 5 + 1/2 log 7 36 – 1/3 log 7 125.

Фронтальный опрос класса ( устные упражнения)

Вычислить: (слайд № 5)

  1. log 2 16
  2. lоg 3 √3
  3. log 7 1
  4. log 5 ( 1 / 625 )
  5. log 2 11 — log 2 44
  1. log 8 14 + log 8 32/7
  2. log 3 5 ∙ log 5 3
  3. 5 log 5 49
  4. 8 lоg 8 5 — 1
  5. 25 –log 5 10

Сравнить числа : (слайд № 6)

  1. log ½ е и log ½ π;
  2. log 2 √5/2 и log 2 √3/2.

Выяснить знак выражения log 0,8 3 · log 6 2/3. (слайд № 7)

  1. Проверка домашнего задания:

На дом были задания следующие упражнения: №327(неч.), 331(неч.), 333(2) и 390(6). Проверить ответы к данным заданиям и ответить на вопросы учащихся.

  1. Изучение нового материала:

Определение: Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим.

Простейшим примером логарифмического уравнения служит уравнение
log a х =с (а > 0, а≠ 1)
Способы решения логарифмических уравнений: (слайд № 8)

  1. Решение уравнений на основании определения логарифма. (слайд № 9)

log a х = с (а > 0, а≠ 1) имеет решение х = а с .

На основе определения логарифма решаются уравнения, в которых:

  • по данным основаниям и числу определяется логарифм,
  • по данному логарифму и основанию определяется число,
  • по данному числу и логарифму определяется основание.

log 2 128= х, log 16 х = ¾, log х 27= 3,

2 х = 128, х =16 ¾ , х 3 =27,

2 х = 2 7 , х =2 3 , х 3 = 3 3 ,

С классом решить следующие уравнения:

а) log 7 (3х-1)=2 (ответ: х=3 1/3)

б) log 2 (7-8х)=2 (ответ: х=3/8).

  1. Метод потенцирования. (слайд № 10)

Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их т.е.

log a f(х) = log a g(х), то f(х) = g(х), при условии, что f(х)>0, g(х)>0 , а > 0, а≠ 1.

3х-1>0; х>1/3

Ответ: решений нет.

С классом решить следующее уравнение:

lg(х 2 -2) = lg х (ответ: х=2)

  1. Уравнения, решаемые с помощью применения основного логарифмического тождества. (слайд №11)

Решите уравнение =log 2 (6-х)

6-х>0;

Решение системы: (0;1)Ụ (1;6).

х=-3 не принадлежит ОДЗ.

х=2 принадлежит ОДЗ.

С классом решить следующее уравнение :

= (ответ: х=1)

  1. Метод приведения логарифмов к одному и тому же основанию. (слайд № 12)

Решите уравнение log 16 х+ log 4 х+ log 2 х=7

¼ log 2 х+½ log 2 х+ log 2 х=7

х=16 – принадлежит ОДЗ.

С классом решить следующее уравнение:

  1. Уравнения, решаемые с помощью применения свойств логарифма. (слайд № 13)

Решите уравнение log 2 (х +1) — log 2 (х -2 ) = 2.

х+1>0;

Воспользуемся формулой преобразования разности логарифмов логарифм частного, получаем log 2 = 2, откуда следует = 4.

Решив последнее уравнение, находим х = 3, 3>1 — верно

С классом решить следующие уравнения:

а)log 5 (х +1) + log 5 (х +5) = 1 (ответ: х=0).

б)log 9 ( 37-12х ) log 7-2х 3 = 1,

37-12х >0, х

log 9 ( 37-12х ) / log 3 (7-2х ) = 1,

½ log 3 ( 37-12х ) = log 3 (7-2х ) ,

log 3 ( 37-12х ) = log 3 (7-2х ) 2 ,

37-12х= 49 -28х +4х 2 ,

х 2 -4х +3 =0, Д=19, х 1 =1, х 2 =3, 3 –посторонний корень .

Ответ: х=1 корень уравнения.

в) lg(х 2 -6х+9) — 2lg(х — 7) = lg9.

(х 2 -6х+9) >0, х≠ 3,

х- 3 = 3х -21 , х -3 =- 3х +21,

х =9. х=6 — посторонний корень.

Проверка показывает 9 корень уравнения.

  1. Уравнения, решаемые введением новой переменной. (слайд № 14)

Решите уравнение lg 2 х — 6lgх+5 = 0.

Пусть lgх = р, тогда р 2 -6р+5=0.

Возвращаемся к замене:

х=10, 10>0 – верно х=100000, 100000>0 – верно

Ответ: 10, 100000

С классом решить следующее уравнение:

log 6 2 х + log 6 х +14 = (√16 – х 2 ) 2 +х 2 ,

16 – х 2 ≥0 ; — 4≤ х ≤ 4;

х >0 , х >0, О.Д.З. [ 0,4).

log 6 2 х + log 6 х +14 = 16 – х 2 +х 2 ,

log 6 2 х + log 6 х -2 = 0

заменим log 6 х = t

t 2 + t -2 =0 ; D = 9 ; t 1 =1 , t 2 = -2.

log 6 х = 1 , х = 6 посторонний корень .

log 6 х = -2, х = 1/36 , проверка показывает 1/36 является корнем .

  1. Уравнения, решаемые с помощью разложения на множители. (слайд № 15)

Решите уравнение log 4 (2х-1)∙ log 4 х=2 log 4 (2х-1)

2х-1>0;

log 4 (2х-1)∙ log 4 х — 2 log 4 (2х-1)=0

log 4 (2х-1)∙(log 4 х-2)=0

log 4 (2х-1)=0 или log 4 х-2=0

2х-1=1 log 4 х = 2

1;16 – принадлежат ОДЗ

С классом решить следующее уравнение:

log 3 х ∙log 3 (3х-2)= log 3 (3х-2) (ответ: х=1)

  1. Метод логарифмирования обеих частей уравнения. (слайд № 16)

Прологарифмируем обе части уравнения по основанию 3.

Получим log 3 = log 3 (3х)

получаем : log 3 х 2 log 3 х = log 3 (3х),

2log 3 х log 3 х = log 3 3+ log 3 х,

2 log 3 2 х = log 3 х +1,

2 log 3 2 х — log 3 х -1=0,

заменим log 3 х = р , х >0

2 р 2 + р -2 =0 ; D = 9 ; р 1 =1 , р 2 = -1/2

log 3 х = -1/ 2 , х= 1/√3.

С классом решить следующее уравнение:

х = 64 (ответ: х=8 ; х=1/4 )

  1. Функционально – графический метод. (слайд № 17)

Решите уравнения: log 3 х = 12-х.

Так как функция у= log 3 х возрастающая , а функция у =12-х убывающая на (0; + ∞ ) то заданное уравнение на этом интервале имеет один корень.

Построим в одной системе координат графики двух функций: у= log 3 х и у =12-х.

При х=10 заданное уравнение обращается в верное числовое равенство 1=1. Ответ х=10.

С классом решить следующее уравнение:

1-√х =ln х ( ответ : х=1).

  1. Подведение итогов, рефлексия (раздать кружочки, на которых ребята отмечают свое настроение рисунком). (слайд № 18,19)

Определить метод решения уравнения:

  1. Домашнее задание: 340(1), 393(1), 395(1,3), 1357(1,2), 337(1), 338(1), 339(1)
  1. Рязановский, А.Р. Математика. 5 – 11 кл.: Дополнительные материалы к уроку математики/ А.Р.Рязановский, Е.А.Зайцев. – 2-е изд., стереотип. – М.: Дрофа,2002
  2. Математика. Приложение к газете «Первое сентября». 1997. № 1, 10, 46, 48; 1998. № 8, 16, 17, 20, 21, 47.
  3. Скоркина, Н.М. Нестандартные формы внеклассной работы. Для средних и старших классов/ Н.М. Скоркина. – Волгоград: Учитель, 2004
  4. Зив, Б.Г., Гольдич,В.А. Дидактические материалы по алгебре и началам анализа для 10 класса./Б.Г.Зив, В.А.Гольдич. – 3-е изд., исправленное. – СПб.: «ЧеРо-на-Неве», 2004
  5. Алгебра и начала анализа: математика для техникумов/под ред. Г.Н.Яковлева.-М.: Наука, 1987

Предварительный просмотр:

Подписи к слайдам:

Способы решения логарифмических уравнений Учитель математики: Плотникова Т.В. МБОУ «СОШ №1 г.Суздаля»

Определение Логарифмом положительного числа b по основанию a , где a >0, а≠1 , называется такой показатель степени с , в которую надо возвести a , чтобы получить b .

Свойства логарифмов log a 1 = 0 log a a = 1 log a (x y)= log a x + log a y 3

Формулы перехода к другому основанию 4

7 Определите знак числа:

Основные методы решения логарифмических уравнений

1. Использование определения логарифма l og 2 128= х log х 27= 3 Решим следующие уравнения: а) log 7 (3х-1)=2 б) log 2 (7-8х)=2 9

2. Метод потенцирования Решим следующее уравнение: lg (х 2 -2) = lg х 10 2

11 3. Уравнения, решаемые с помощью применения основного логарифмического тождества Решим следующее уравнение: 1

12 4 . Метод приведения логарифмов к одному и тому же основанию log 16 х + log 4 х + log 2 х=7 Решим следующее уравнение:

13 5. Уравнения, решаемые с помощью применения свойств логарифма log 2 (х +1) — log 2 (х -2 ) = 2 Решим следующие уравнения: а) l og 5 (х +1) + log 5 (х +5) = 1 б)log 9 ( 37-12х ) log 7-2х 3 = 1 в) lg(х 2 -6х+9) — 2lg(х — 7) = lg9 0 1 9

6. Уравнения, решаемые введением новой переменной l g 2 х — 6lgх +5 = 0 Решим следующие уравнения: log 6 2 х + log 6 х +14 = (√16 – х 2 ) 2 +х 2 14

15 7. Уравнения, решаемые с помощью разложения на множители log 4 (2х-1)∙ log 4 х =2 log 4 (2х-1 ) Решим следующие уравнения: log 3 х ∙ log 3 (3х-2 )= log 3 (3х-2) 1

8. Метод логарифмирования Решим следующее уравнение: 16

9. Функционально – графический метод log 3 х = 12-х Решим следующее уравнение: 17 1

Определить метод решения уравнения: Уравнение: Метод решения по определению логарифма переход к другому основанию разложение на множители потенцирование введение новой переменной переход к другому основанию использование свойств логарифма логарифмирование графический 18

Да! И кто придумал эти логарифмические уравнения! У меня всё получается. Надо решить ещё пару примеров?! Рефлексия 19

По теме: методические разработки, презентации и конспекты

Различные способы решения логарифмических уравнений

Карточка-инструктор по теме: «Различные способы решения логарифмических уравнений».

Опорный конспект по теме «Способы решения логарифмических уравнений»

Опорный конспект «Способы решения логарифмических уравнений».

Методическая разработка урока алгебры в 7 классе «Различные способы решения систем линейных уравнений» способы решения систем уравнений

Урок алгебры в 7 классе направлен на обобщение и систематизацию различных способов решения систем уравнений: метода сравнения, сложения, подстановки, графического метода, метода Крамера, выбора рацион.

Конспект обобщающего урока «Логарифмическая функция. Методы решения логарифмических уравнений», алгебра 11 класс.

Урок обобщения и систематизации знаний с использованием индивидуальной, фронтальной, коллективной форм работы. Используются разноуровневые задания.Урок позволяет создать условия для развития творчески.

Логарифмы. Логарифмическая функция. Решение логарифмических уравнений и неравенств

Конспект для открытого урока с презентацией.

«Логарифмические уравнения. Способы решения логарифмических уравнений»

В презентации рассматриваются свойства логарифмов. Методы решения логарифмических уравнений. Тест на решение уравнений.

Элективный курс «Различные способы решения логарифмических уравнений и неравенств»

Представлена разработка элективного курса «Различные способы решения логарифмических уравнений и неравенств».

Методика решения логарифмических уравнений

Разделы: Математика

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

(3)

и его решения подставить в систему неравенств

(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х, если

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть ; тогда

Учитывая, что

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение

Решение: Построим графики функций и y = x

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

Пример 8: Найти х, если

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

истинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке

На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.

Методическая разработка «Методы решение логарифмических уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Методы решения логарифмических уравнений.docx

Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них

И это решение состоит из двух равноценных частей:

1) нахождение области допустимых значений (ОДЗ),

2) решение самого уравнения.

Эти части решаются независимо друг от друга. Главное — в самом конце не забыть результаты сопоставить, лишнее выбросить.

ОДЗ — это те значения х , которые разрешены для исходного примера . А как искать ОДЗ? Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия . Таких запретных действий в математике очень мало. ( Нельзя делить на ноль, в корнях чётной степени подкоренное выражение должно быть неотрицательным, выражение стоящее под логарифмом должно быть неотрицательным и основание логарифма а >0 и а ≠1.)

П ростейшие логарифмические уравнения

Умение решать простейшие логарифмические уравнения — это очень важно. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим! Собственно, простейшие уравнения — это финишная часть решения любых уравнений.

Уравнения вида log а f(х) = log а g(х)

Простейшее уравнение log а f(х) = log а g(х) решается методом потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:
log а f(х) = log а g(х) f(х) = g(х) , при f(х)>0, g(х)>0 , а > 0, а≠ 1. т.е. если равны логарифмы по одному и тому же основанию, то и равны логарифмируемые выражения. В виде равносильного перехода:

Ликвидировать логарифмы безо всяких опасений можно, если у них:

а) одинаковые числовые основания

в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве

-В уравнении log 3 х = 2log 3 (3х-1) убирать логарифмы нельзя. Двойка справа не позволяет . Коэффициент.

— В примере log 3 х+log 3 (х+1) = log 3 (3+х) тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два .

Короче, убирать логарифмы можно, если уравнение выглядит так и только так: log а (. ) = log а (. )

В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение

Пример 1. Решите уравнение:

Решение: способ 1 . В область допустимых значений (ОДЗ) входят только те x , при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

Видим логарифмы по одному и тому же основанию равны, значит, равны и логарифмируемые выражения .

В область допустимых значений входит только первый корень. Ответ: 7. ОДЗ можно было не решать, а просто записать. В конце каждый корень подставить в ОДЗ. Если с каждым неравенством ОДЗ получится верное числовое неравенство, то он идет в Решение: способ 2 . Если это уравнение решим путем равносильных переходов , то ОДЗ нашли бы без всяких квадратных неравенств и пересечений. Итак

Уравнение х 2 — 5х – 14 = 0 имеет корни х 1 = 7, х 2 = -2. В область допустимых значений входит только первый корень. Ответ: x = 7.

Пример 2 . Решите уравнение

Решение. Решим методом равносильных переходов . Тогда уравнение равносильно системе

Корни уравнения -2 и 5. Только -2 ϵ ОДЗ . Ответ: -2

Итак уравнения такого вида решили 2-мя способами: 1) отдельно найдя ОДЗ и отдельно решив само уравнение; 2) используя равносильные переходы. Какой способ вам по душе?

Уравнение log a f ( x ) = b п ростейшее логарифмическое уравнение, где а и b — числа; а >0, a ≠1. Переменная х присутствует только внутри аргумента.

1 ) Применение определения логарифма

Решение уравнений применением определения логарифма

Решение уравнения
основано на применении определения логарифма и в решении равносильного уравнения

Для уравнений log a f ( x ) = b записывать область определения не нужно ( f ( x ) >0 ) , потому что она будет выполняться автоматически . Так как в какую бы степень мы бы не возводили положительное число а , на выходе мы все равно получим положительное число, т.е. если а > 0, то a b > 0 всегда => f ( x ) = a b > 0.

Пример 1 . Решите уравнение log 5 ( x – 2) = 1

Решение: Переменная х встречается лишь в одном log и стоит в его аргументе, значит находить ОДЗ не надо. log 5 ( x – 2) = 1  x – 2 = 5 1  x – 2 = 5  x = 7. Ответ: 7.

Пример 2 . Решите уравнение

Решение: Три раза выполним переход: log a f ( x ) = b f ( x ) = a b

2). Решение простейшего логарифмического уравнения log a f ( x ) = b представлением числа в виде логарифма b = log a a b (методом потенцирования).

Пример 3 . Решите уравнение:

Решение: Это простейшее логарифмическое уравнение, поэтому нет необходимости найти ОДЗ, потому что 3х – 1>0 будет выполняться автоматически. Слева у нас стоит выражение с логарифмом, а справа – число . Что делать? Нужно сделать так, чтобы справа тоже было выражение с логарифмом по основанию 0,5 а затем просто сбросить логарифмы. Так как −3 = −3*1 = -3* log 0,5 0,5= log 0,5 0,5 −3 тогда уравнение примет вид: log 0,5 (3 x − 1) = log 0,5 0,5 −3

Все десятичные дроби переводите в обычные, когда вы решаете логарифмическое уравнение.

Заметим что 0,5 -3 = (1/2) −3 = (2 -1 ) -3 = 2 3 = 8 и получим

Пример 4 . Решите уравнение

Решение: Это простое логарифмическое уравнение, поэтому можно не найти ОДЗ. Первый шаг- дробь справа представим в виде логарифма. Получим:

Учитывая, что 16 1/4 = (2 4 ) 1/4 = 2

избавляемся от знака логарифма и получаем обычное иррациональное уравнение: где надо будет учесть ОДЗ.

, решим равносильным переходом к системе:

Из полученных корней нас устраивает только первый, так как второй корень меньше нуля. Единственным ответом будет число 9. Ответ: 9 .

Уравнения, решаемые применением свойств логарифмов

Схема решения не простых логарифмических уравнений

1. Привести уравнение с помощью свойств логарифмов к виду:

2. Решить равносильное уравнение

f ( x ) = a b или f ( x ) = g ( x ) по их алгоритму .

Пример 1. Решите уравнение

Если lg ( x – 1) переведем в правую часть уравнения, то получим уравнение вида log а f(х) = log а g(х).

Если неравенства неудобные, ОДЗ можно не решать. Достаточно подставить результаты уравнения в записанные условия ОДЗ и проверить, какие решения проходят. Их и взять за ответы

Пример 2 . Решите уравнение

Если в уравнении содержатся логарифмы с разными основаниями, то, прежде всего, следует свести все логарифмы к одному основанию, используя формулы перехода , и

Пример 3 . Решите уравнение

Решение. ОДЗ: х > 0. Сразу видно, что у логарифмов основания разные. Используя формулу придем к одинаковому основанию

Уравнения, решаемые введением новой переменной

Если, в уравнение неоднократно, встречается некоторое определенное выражение, то оно решается введением новой переменной

Пример 1 . Решите уравнение

ОДЗ: x > 0. Введем новую переменную тогда получим квадратное уравнение:

Пример 2 . Решите уравнение

Оба корня удовлетворяют ОДЗ нашего уравнения.

Пример 3. Решите уравнение 4 log 25 5x + log 2 5 x – 5 = 0; ОДЗ: x > 0.

Тут 2 основания, выполним переход к основанию 5, используя формулу

2(log 5 5 + log 5 x) + log 2 5 x – 5 = 0.

2(1 + log 5 x) + log 2 5 x – 5 = 0.

Пусть log 5 x = t, тогда 2(1 + t) + t 2 – 5 = 0;

t = – 3 или t = 1; Обратно переходим на обозначение log 5 x = t:

x = 1/125. Оба корня удовлетворяют ОДЗ. Ответ:

Пример 4. Решите уравнение Решение: Область допустимых значений:

Решать систему необходимости нет. Пусть log 2 (5x – 1) = t, тогда

Уравнения, содержащие неизвестное и в основании и в аргументе.

Уравнение log f ( x ) g ( x ) = b похож е простейшему у равнению log a f ( x ) = b Сходство: в обеих уравнениях в левой части log , в правой число b . Отличие в том, что в первой переменная х присутствует не только внутри аргумента, но и в основании логарифма .

Но мы должны учесть определенные требования. 1) аргумент каждого из логарифмов должен быть больше 0: 2) осн о вание должно быть не только больше 0, но и отлично от 1

1 ) Применение определения логарифма

2 )Представление числа в виде логарифма

По определению логарифма х 2 – 5х + 10 = (х — 1) 2 х 2 – 5х + 10 = :х 2 – 2х + 1, -3х = -9 х = 3

Проверим принадлежность х = 3 ОДЗ: 3 2 – 5*3 + 10 > 0 верно, 3 – 1 > 0 верно 3 – 1 ≠ 1 верно

Пример 2 . Решите уравнение log х+1 (2 x 2 +1)=2 Решение: Решим методом равносильных переходов. Заменяем 2 на так как 2=2*1=2* log х + 1 (х+1)= log х + 1 (х+1) 2 тогда получим: log х+1 (2x 2 +1)= log х+1 (x+1) 2

Наше уравнение содержит неизвестное и в основании и в аргументе. Поэтому 1) аргумент каждого из логарифмов должен быть больше 0. 2) основание должно быть не только больше 0, но и ≠ 1 . В итоге получим систему:

Решим уравнение 2х 2 +1=(х+1) 2 , 2х 2 + 1 = х 2 + 2х + 1 х 2 — 2x = 0  x ( x — 2) = 0  x=2 или x=0. х=0 не соответствует системе. Ответ: 2.

Способ 2. ОДЗ: по определению логарифма получим : 2х 2 +1 = (х+1) 2 , 2х 2 +1 = х 2 + 2х + 1, х 2 – 2х = 0  x ( x – 2) = 0  x = 0, x = 2. Корень х = 0 не удовлетворяет третьему неравенству ОДЗ.

Показательно – логарифмические уравнения

При решении уравнений, содержащих переменную и в основании, и в показателе степени, используется метод логарифмирования. Если при этом в показателе степени содержится логарифм, то обе части уравнения надо прологарифмировать по основанию этого логарифма.

Пример 1. Решить уравнение : х 1 – lgx = 0.01. Решение: ОДЗ: x > 0, x ≠ 1. Прологарифмировав обе части уравнения по основанию 10, получим уравнение:

Положив t = lg x , придем к уравнению t 2 t – 2 = 0 , откуда t 1 = -1, t 2 = 2. Таким образом, задача свелась к решению следующей совокупности уравнений:

Оба найденных значения входят в ОДЗ. Ответ: 0,1; 100

Пример 2 . Решить уравнение 3 2log 4 x +2 =16 x 2 .

Решение . Область определения x >0. Прологарифмируем обе части по основанию 4.

Используя свойства логарифмов, получим

Функционально – графический метод .

В одной и той же системе координат строим графики функции у= log 2 x и у = 3 – x

Ответ: 2.

Обычно графически метод применяется, если трудно найти других методов. Графически метод менее точный . Целесообразно его использовать, если стоит вопрос «Сколько корней имеет уравнение».

Метод использования монотонности функции

Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функции y = f ( x ) возрастает, а другая y = g ( x ) убывает на промежутке Х, то уравнение f ( x ) = g ( x ) имеет не более одного корня на промежутке Х.

Если корень имеется, то его можно угадать.

Пример 1. Решить уравнение: l og 3 x = 4- x Решение: ОДЗ х > 0. Так как функция у= log 3 х возрастающая, а функция у = 4-х убывающая на (0; + ∞ ), то заданное уравнение на этом интервале имеет один корень. Подбором определяем х = 3. Ответ: 3 .

Пример 2 . Решите уравнение : log 3 ( x + 1) + log 4 (5 x + 6) = 3. ОДЗ: х > -1

Решение: у = log 3 ( x + 1) – возрастающая функция, y = log 3 ( x + 1) – тоже возрастающая. Сумма двух возрастающих функции дает возрастающую функцию. В правой части постоянная функция у = 3. Значит уравнение имеет не более одного корня. Подбором определяем х = 2. Ответ: 2.


источники:

http://urok.1sept.ru/articles/313550

http://infourok.ru/metodicheskaya-razrabotka-metody-reshenie-logarifmicheskih-uravnenij-4110454.html