Сколько различных решений имеет система уравнений x1

Сколько различных решений имеет система уравнений x1

РАЗОБРАННЫЕ ПРИМЕРЫ ЗАДАЧ:

Решение. Все “сомножители”2 имеют форму xf=xi+1, они должны быть равны 1. Это значит, что любые два соседних бита должны быть равны. Существует всего две таких цепочки:

Ответ: два решения.

Задача 2. Сколько различных решений имеет система уравнений
(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1
(x2 ˅ x3) ˄ ((x2 ˄ x3) → x4) = 1
(x3 ˅ x4) ˄ ((x3 ˄ x4) → x5) = 1
(x4 ˅ x5) ˄ ((x4 ˄ x5) → x6) = 1
(x5 ˅ x6) ˄ ((x5 ˄ x6) → x7) = 1
(x6 ˅ x7) ˄ ((x6 ˄ x7) → x8) = 1
(x7 ˅ x8) = 1
где x1,x2,…,x8 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:
Решим систему с помощью битовых цепочек. Битовая цепочка — это набор единиц и нулей для переменных x1. x8, при которых система будет истинна.

Цепочки строятся по определенным правилам, которые можно вывести из системы. Рассмотрим первое уравнение:

(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1

Для получения истины выражение (x1 ˅ x2) обязательно должно быть истинно, то есть в уравнении не может быть двух подряд идущих нулей.

Кроме этого, выражение ((x1 ˄ x2) → x3) тоже должно быть истинно. Ложным оно будет в том случае, если x1 и x2 будет равны 1, а x3 — 0. То есть после двух подряд идущих единиц не может быть нуля.

Каждое следующее уравнение связано с предыдущим:

(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1
(x2 ˅ x3) ˄ ((x2 ˄ x3) → x4) = 1

То есть два правила, которые мы вывели, применяются не только к каждому уравнению, но и ко всей цепочке.

Первая очевидная цепочка для набора иксов — все единицы:

Рассмотрим цепочки, в которых может быть только один нуль. По правилу нуля не может быть после двух единиц:

x1 1 0 1
x2 1 1 0
x3 1 1 1
x4 1 1 1
x5 1 1 1
x6 1 1 1
x7 1 1 1
x8 1 1 1

Рассмотрим цепочки с двумя нулями. По правилу два нуля не могут находиться рядом:

x1 1 0 1 0 1
x2 1 1 0 1 0
x3 1 1 1 0 1
x4 1 1 1 1 0
x5 1 1 1 1 1
x6 1 1 1 1 1
x7 1 1 1 1 1
x8 1 1 1 1 1

Построим оставшиеся цепочки:

x1 1 0 1 0 1 0 1 0 1
x2 1 1 0 1 0 1 0 1 0
x3 1 1 1 0 1 0 1 0 1
x4 1 1 1 1 0 1 0 1 0
x5 1 1 1 1 1 0 1 0 1
x6 1 1 1 1 1 1 0 1 0
x7 1 1 1 1 1 1 1 0 1
x8 1 1 1 1 1 1 1 1 0

Получается, что для данной системы существует 9 различных решений.


Задание: Сколько различных решений имеет система уравнений

((x1 ˄ x2) ˅ (¬x1 ˄ ¬x2)) → ((x3 ˄ x4) ˅ (¬x3 ˄ ¬x4)) = 1
((x3 ˄ x4) ˅ (¬x3 ˄ ¬x4)) → ((x5 ˄ x6) ˅ (¬x5 ˄ ¬x6)) = 1
((x5 ˄ x6) ˅ (¬x5 ˄ ¬x6)) → ((x7 ˄ x8) ˅ (¬x7 ˄ ¬x8)) = 1
((x7 ˄ x8) ˅ (¬x7 ˄ ¬x8)) → ((x9 ˄ x10) ˅ (¬x9 ˄ ¬x10)) = 1
где x1,x2,…,x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Для начала давайте рассмотрим одну из частей нашей системы:

Данное выражение будет истинно, если переменные x1 и x2 будут одновременно равны либо единице, либо нулю, что, фактически, совпадает с таблицей истинности для эквиваленции (тождества). То есть мы его можем записать так:

Упростим так всю нашу систему:
(x1 ≡ x2) → (x3 ≡ x4) = 1
(x3 ≡ x4) → (x5 ≡ x6) = 1
(x5 ≡ x6) → (x7 ≡ x8) = 1
(x7 ≡ x8) → (x9 ≡ x10) = 1

Теперь все стало проще. Обратите внимание, что каждая часть следования вполне самостоятельна, например (x1 ≡ x2) никак не связана переменными с (x3 ≡ x4). То есть мы можем упростить нашу систему еще раз:

A → B = 1
B → C = 1
C → D = 1
D → E = 1

Теперь давайте найдем все возможные комбинации переменных А-Е для этой системы. В импликации (следовании) ложь может быть только в одном случае, если первое выражение истинно, а второе — ложно. То есть при построении цепочек мы должны избежать комбинации 1,0:

A | 1 | 0 | 0 | 0 | 0 | 0
B | 1 | 1 | 0 | 0 | 0 | 0
C | 1 | 1 | 1 | 0 | 0 | 0
D | 1 | 1 | 1 | 1 | 0 | 0
E | 1 | 1 | 1 | 1 | 1 | 0

Переменные A-E в основной системе являются эквиваленцией, то есть на каждую истину или ложь принимают по два различных варианта. То есть для каждого столбца в нашей таблице предусмотрено 25 = 32 варианта.

Например, первый столбец — 1 1 1 1 1, то есть в каждое тождество системы должно давать 1, а это возможно в двух вариантах иксов: 0 ≡ 0 или 1 ≡ 1, то есть на каждую единицу таблицы приходится два варианта. То же самое и с нулями.

Всего в таблице у нас получилось 6 различных цепочек, каждая принимает по 32 варианта, то есть общее количество комбинаций: 6*32=192 комбинации.

Задача №23. Решение систем логических уравнений.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1z2z3z4z5z6z7z8z9
010101010
101010101

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

23. Логические уравнения — продолжение

23. Логические уравнения — продолжение — Сколько различных решений имеет система уравнений

(X1 X2)X3 ¬X4) = 0

(X3 X4)X5 ¬X6) = 0

(X5 X6)X7 ¬X8) = 0

(X7 X8)X9 ¬X10) = 0

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

x1x2x3x4
0000
1
10
1
111
1011
1

x1x2x3x45x6x7x8x9x10
0011111
0111111
1011111
111471013
16

Ответ: 16

Сколько различных решений имеет система уравнений

(X1X2)(X2X3) = 1

(X2X3)(X3X4) = 1

(X5X6)(X6X7) = 1

где x1, x2, …, x7 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

x1x2x3
000
10
1
100
1
11

x1x2x2x3x3x4x4x5x5x6x6x7
00123456
01111111
10111111
11123456
14

Ответ: 14

Сколько различных решений имеет система логических уравнений

(x1 x2 x3) ∧ (x1 y1) = 1

(x2 x3 x4) ∧ (x2 y2) = 1

(x3 x4 x5) ∧ (x3 y3) = 1

(x4 x5 x6) ∧ (x4 y4) = 1

(x5 x6 x7) ∧ (x5 y5) = 1

x6 y6 = 1

где x1, …, x6, y1, …, y6, – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

x1x2x2x3x3x4x4x5x5x6x6x7
00135112143
01135112143
101135112142
111392357135270

Ответ: 398

Сколько различных решений имеет система логических уравнений

(x1 y1) ∧ ((x2 y2) → (x1 y1)) = 1

(x2 y2) ∧ ((x3 y3) → (x2 y2)) = 1

(x6 y6) ∧ ((x7 y7) → (x6 y6)) = 1

x7 y7 = 1

где x1,x2,…,x7, у12,…,у7 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполняются данные равенства. В качестве ответа нужно указать количество таких наборов.

Решение:

x1y1x2y2
0000
1
10
1
100
1100
1
10
1

x1y1x2y2x3y3x4y4x5y5x6y6x7y7
00137174199239
01125122970169
10025122970169
11125122970169
408

Ответ: 408

Сколько существует различных наборов значений логических переменных x1, x2, … x8, y1, y2, … y8, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) /\ (x1→y1) = 1
(x2→x3) /\ (x2→y2) = 1

(x7→x8) /\ (x7→y7) = 1
(x8→y8) = 1

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x8, y1, y2, … y8, при которых выполнена данная система равенств.

В качестве ответа Вам нужно указать количество таких наборов.

Источник: СтатГрад 2017−2018

Решение:

(x1→x2) = 1
(x2→x3) = 1

(x7→x8) = 1
(x8→y8) = 1

x1x2x3x4x5x6x7x8(x1→y1) для каждого 0’а, y может 0 или 1
000000002 8 =256
000000012 7 =128
000000112 6 =64
000001112 5 =32
000011112 4 =16
000111112 3 =8
001111112 2 =4
011111112 2 =2
111111112 0 =1
256+128+64+32+16+8+4+2+1=511

Ответ: 511

Сколько существует различных наборов значений логических переменных x1 , x2 , … x8 , y1 , y2 , … y8 , которые удовлетворяют всем перечисленным ниже условиям?

(x1 ∨ x2) ∧ (x1 ∧ x2 → x3) ∧ (¬x1 ∨ y1) = 1
(x2 ∨ x3) ∧ (x2 ∧ x3 → x4) ∧ (¬x2 ∨ y2) = 1

(x6 ∨ x7) ∧ (x6 ∧ x7 → x8) ∧ (¬x6 ∨ y6) = 1
(x7 ∨ x8) ∧ (¬x7 ∨ y7) = 1
¬x8 ∨ y8 = 1

Решение:

(x1+x2) · (¬x1+¬x2+x3) · (¬x1+y1) = 1

x1x2x3y1
0100-1
1
1001
1
1111

x1x2x2x3x3x4x4x5x5x6x6x7x7x8
0001224480
0111224488·2=16
1012244888·2=16
11135913212929
61

(x7 ∨ x8) ∧ (¬x7 ∨ y7) = 1
¬x8 ∨ y8 = 1

x7x8y7y8
010-11
1010-1
11

Ответ: 6 1

Сколько существует различных наборов значений логических переменных x1, x2, … x8, y1, y2, … y8, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) /\ (y1→y2) /\ (y1→x1) = 1
(x2→x3) /\ (y2→y3) (y2→x2) = 1

(x7→x8) /\ (y7→y8) /\ (y7→x7) = 1
(y8→x8) = 1

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x8, y1, y2, … y8, при которых выполнена данная система равенств.
В качестве ответа Вам нужно указать количество таких наборов.


источники:

http://ege-study.ru/ru/ege/materialy/informatika/zadanie-23/

http://onlyege.ru/23-logicheskie-uravneniya-prodolzhenie/