Сколько различных решений имеет уравнения информатика 10

Сколько различных решений имеет уравнения информатика 10

Сколько различных решений имеет уравнение J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В . Получим

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Сколько различных решений имеет уравнения информатика 10

РАЗОБРАННЫЕ ПРИМЕРЫ ЗАДАЧ:

Решение. Все “сомножители”2 имеют форму xf=xi+1, они должны быть равны 1. Это значит, что любые два соседних бита должны быть равны. Существует всего две таких цепочки:

Ответ: два решения.

Задача 2. Сколько различных решений имеет система уравнений
(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1
(x2 ˅ x3) ˄ ((x2 ˄ x3) → x4) = 1
(x3 ˅ x4) ˄ ((x3 ˄ x4) → x5) = 1
(x4 ˅ x5) ˄ ((x4 ˄ x5) → x6) = 1
(x5 ˅ x6) ˄ ((x5 ˄ x6) → x7) = 1
(x6 ˅ x7) ˄ ((x6 ˄ x7) → x8) = 1
(x7 ˅ x8) = 1
где x1,x2,…,x8 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:
Решим систему с помощью битовых цепочек. Битовая цепочка — это набор единиц и нулей для переменных x1. x8, при которых система будет истинна.

Цепочки строятся по определенным правилам, которые можно вывести из системы. Рассмотрим первое уравнение:

(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1

Для получения истины выражение (x1 ˅ x2) обязательно должно быть истинно, то есть в уравнении не может быть двух подряд идущих нулей.

Кроме этого, выражение ((x1 ˄ x2) → x3) тоже должно быть истинно. Ложным оно будет в том случае, если x1 и x2 будет равны 1, а x3 — 0. То есть после двух подряд идущих единиц не может быть нуля.

Каждое следующее уравнение связано с предыдущим:

(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1
(x2 ˅ x3) ˄ ((x2 ˄ x3) → x4) = 1

То есть два правила, которые мы вывели, применяются не только к каждому уравнению, но и ко всей цепочке.

Первая очевидная цепочка для набора иксов — все единицы:

Рассмотрим цепочки, в которых может быть только один нуль. По правилу нуля не может быть после двух единиц:

x1 1 0 1
x2 1 1 0
x3 1 1 1
x4 1 1 1
x5 1 1 1
x6 1 1 1
x7 1 1 1
x8 1 1 1

Рассмотрим цепочки с двумя нулями. По правилу два нуля не могут находиться рядом:

x1 1 0 1 0 1
x2 1 1 0 1 0
x3 1 1 1 0 1
x4 1 1 1 1 0
x5 1 1 1 1 1
x6 1 1 1 1 1
x7 1 1 1 1 1
x8 1 1 1 1 1

Построим оставшиеся цепочки:

x1 1 0 1 0 1 0 1 0 1
x2 1 1 0 1 0 1 0 1 0
x3 1 1 1 0 1 0 1 0 1
x4 1 1 1 1 0 1 0 1 0
x5 1 1 1 1 1 0 1 0 1
x6 1 1 1 1 1 1 0 1 0
x7 1 1 1 1 1 1 1 0 1
x8 1 1 1 1 1 1 1 1 0

Получается, что для данной системы существует 9 различных решений.


Задание: Сколько различных решений имеет система уравнений

((x1 ˄ x2) ˅ (¬x1 ˄ ¬x2)) → ((x3 ˄ x4) ˅ (¬x3 ˄ ¬x4)) = 1
((x3 ˄ x4) ˅ (¬x3 ˄ ¬x4)) → ((x5 ˄ x6) ˅ (¬x5 ˄ ¬x6)) = 1
((x5 ˄ x6) ˅ (¬x5 ˄ ¬x6)) → ((x7 ˄ x8) ˅ (¬x7 ˄ ¬x8)) = 1
((x7 ˄ x8) ˅ (¬x7 ˄ ¬x8)) → ((x9 ˄ x10) ˅ (¬x9 ˄ ¬x10)) = 1
где x1,x2,…,x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Для начала давайте рассмотрим одну из частей нашей системы:

Данное выражение будет истинно, если переменные x1 и x2 будут одновременно равны либо единице, либо нулю, что, фактически, совпадает с таблицей истинности для эквиваленции (тождества). То есть мы его можем записать так:

Упростим так всю нашу систему:
(x1 ≡ x2) → (x3 ≡ x4) = 1
(x3 ≡ x4) → (x5 ≡ x6) = 1
(x5 ≡ x6) → (x7 ≡ x8) = 1
(x7 ≡ x8) → (x9 ≡ x10) = 1

Теперь все стало проще. Обратите внимание, что каждая часть следования вполне самостоятельна, например (x1 ≡ x2) никак не связана переменными с (x3 ≡ x4). То есть мы можем упростить нашу систему еще раз:

A → B = 1
B → C = 1
C → D = 1
D → E = 1

Теперь давайте найдем все возможные комбинации переменных А-Е для этой системы. В импликации (следовании) ложь может быть только в одном случае, если первое выражение истинно, а второе — ложно. То есть при построении цепочек мы должны избежать комбинации 1,0:

A | 1 | 0 | 0 | 0 | 0 | 0
B | 1 | 1 | 0 | 0 | 0 | 0
C | 1 | 1 | 1 | 0 | 0 | 0
D | 1 | 1 | 1 | 1 | 0 | 0
E | 1 | 1 | 1 | 1 | 1 | 0

Переменные A-E в основной системе являются эквиваленцией, то есть на каждую истину или ложь принимают по два различных варианта. То есть для каждого столбца в нашей таблице предусмотрено 25 = 32 варианта.

Например, первый столбец — 1 1 1 1 1, то есть в каждое тождество системы должно давать 1, а это возможно в двух вариантах иксов: 0 ≡ 0 или 1 ≡ 1, то есть на каждую единицу таблицы приходится два варианта. То же самое и с нулями.

Всего в таблице у нас получилось 6 различных цепочек, каждая принимает по 32 варианта, то есть общее количество комбинаций: 6*32=192 комбинации.

Задача №23. Решение систем логических уравнений.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1z2z3z4z5z6z7z8z9
010101010
101010101

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):


источники:

http://www.sites.google.com/site/informatika1554/home/zadanie-23

http://ege-study.ru/ru/ege/materialy/informatika/zadanie-23/