Сколько решений может иметь уравнение

Исследование системы линейных уравнений с двумя переменными на количество решений

Разделы: Математика

Цель урока: сформировать умение по виду системы двух линейных уравнений с двумя переменными определять количество решений системы.

Задачи:

  • Образовательные:
    • повторить способы решения систем линейных уравнений;
    • связать графическую модель системы с количеством решений системы;
    • найти связь между соотношением коэффициентов при переменных в системе и количеством решений.
  • Развивающие:
    • формировать способности к самостоятельным исследованиям;
    • развивать познавательный интерес учащихся;
    • развивать умение выделять главное, существенное.
  • Воспитательные:
    • воспитывать культуру общения; уважение к товарищу, умение достойно вести себя. закреплять навыки работы в группе;
    • формировать мотивацию на здоровый образ жизни.

Тип урока: комбинированный

I. Организационный момент (нацелить учащихся на урок)

– На предыдущих уроках мы научились решать системы двух линейных уравнений с двумя переменными разными способами. Сегодня на уроке нам предстоит ответить на вопрос: «Как, не решая систему уравнений определить, сколько же решений она имеет?», поэтому тема урока называется «Исследование системы линейных уравнений с двумя переменными на количество решений ». Итак, начнём урок. Соберёмся с силами. В четыре приёма глубоко вдохнём воздух через нос и в пять приёмов с силой выдохнем, задувая воображаемую свечку. Повторим это 3 раза. Очень быстро активизируем свой мозг. Для этого интенсивно промассажируем межбровную точку: указательным пальцем правой руки делаем 5 круговых движений в одну сторону и в другую. Повторим это 2-3 раза.

II. Проверка домашнего задания (коррекция ошибок)

Показать решение системы разными способами:

А) методом подстановки;
Б) Методом сложения;
В) по формулам Крамера;
Г) Графически.

Пока на доске готовятся к ответам по домашнему заданию, с остальными учениками начинается подготовка к следующему этапу урока.

III. Этап подготовки к усвоению нового материала (актуализация опорных знаний)

– Если вы знаете ответы на вопросы, но вдруг растерялись и всё сразу забыли, попробуйте собраться, убедить себя, что вы всё знаете и у вас всё получится. Хорошо помогает обыкновенный массаж всех пальцев. Во время обдумывания массажируйте все пальчики от основания к ногтю.

– Что называют системой двух уравнений?

– Что значит решить систему линейных уравнений?
– Что является решением системы линейных уравнений?
– Будет ли пара чисел (– 3; 3) решением системы уравнений:

– Расскажите, в чём суть каждого известного вам способа решения систем линейных уравнений с двумя переменными. (Рекомендуется общение в парах)

Ответы учеников сопровождаются показом слайдов 1-14 (Презентация) учителем. (можно одним из учеников). Проверяем домашнее задание (слушаем ответы учеников у доски).

Учитель: Для решения специфических систем уравнений существует ещё один способ, называется он методом подбора решения. Попробуйте, не решая подобрать решение системы уравнений: . Объясните суть метода.

– Найдите решение системы уравнений:

а) б) в)

– Дано уравнение a + b =15, добавьте такое уравнение, чтобы решением полученной системы была пара чисел (– 12; 27)
Перечислите ещё раз все способы решения систем линейных уравнений, с которыми вы познакомились.

IV. Этап усвоения новых знаний (исследовательская работа)

– Прежде чем переходить к следующему этапу урока, немного отдохнём.
Сидя на стуле – расслабьтесь, примите позу пиджака, висящего на вешалке,
«Постреляйте» глазами в соседей. А затем вспомним про «царственную осанку»: спина прямая, мышцы головы без напряжения, выражение лица очень значительное, соберёмся с мыслями, для чего сделаем массаж межбровной точки или пальчиков и приступим к дальнейшей работе.

Учитель: Мы научились решать системы линейных уравнений с двумя переменными разными способами и знаем, что система таких уравнений может иметь:

А) одно решение;
Б) не иметь решений;
В) много решений.

А нельзя ли, не прибегая к решению, ответить на вопрос: сколько же решений имеет система уравнений? Сейчас мы с вами проведём небольшое исследование.
Для начала разобьемся на три исследовательские группы. Составим план нашего исследования, ответив на вопросы:

1) Что представляет собой графическая модель системы линейных уравнений с двумя переменными?
2) Как могут располагаться две прямые на плоскости?
3) Как зависит количество решений системы от расположения прямых?

(После ответов учащихся используем слайды 6-10 Презентации.)

Учитель: Значит основа нашего исследования состоит в том, чтобы по виду системы понять, как располагаются прямые.
Каждая исследовательская группа решает эту задачу на конкретной системе уравнений по плану (Приложение 1).
Система для группы №1.

Система для группы №2.

Система для группы №3.

На выполнение работы даётся 5 минут, затем делимся своими выводами с одноклассниками. (Приложение 2), а также обращаемся к слайдам 15-17 Презентации.

V. Релаксация

Предлагаю отдохнуть, расслабиться: физкультминутка или психологический тренинг. (Приложение 3)

VI. Закрепление нового материала

А) Первичное закрепление

Используя полученные выводы, ответьте на вопрос: сколько решений имеет система уравнений

а) б) в)

Итак, прежде чем решать систему, можно узнать, сколько она имеет решений.

Б) решение более сложных задач по новой теме

1) Дана система уравнений

– При каких значениях параметра a данная система имеет единственное решение?

(Работа выполняется в группах по 4 человека: пары поворачиваются друг к другу)

– При каких значениях параметра a данная система не имеет решений?
– При каких значениях параметра данная система уравнений имеет много решений?

2) Дано уравнение – 2x + 3y = 12

Добавьте ещё одно уравнение так, чтобы система этих уравнений имела:

А) одно решение;
Б) бесконечно много решений.

3) Провести полное исследование системы уравнений на наличие её решений:

VII. Рефлексия. Методика «Мухомор»

На дополнительной доске (или на отдельном плакате) нарисован круг, разбитый на секторы. Каждый сектор – это вопрос, рассмотренный на уроке. Ученикам предлагается
поставить точку:

  • ближе к центру, если ответ на вопрос не вызывает сомнения;
  • в середину сектора, если сомнения есть;
  • ближе к окружности, если вопрос остался не понятым; (Приложение 4)

VIII. Домашнее задание

Алгебра-7, под редакцией Теляковского. Параграфы 40-44, №1089,1095а), решать любым способом.
Выяснить, при каком значении a система имеет одно решение, много решений, не имеет решений

– Итак: наш урок подошёл к концу. Приготовим себя к перемене: сцепите руки замком, положите их на затылок. Положите голову на парту, резко сядьте прямо, примите «царственную» позу. Повторите это ещё раз.

– Урок окончен. Всем спасибо. Подойдите к доске и сделайте отметку на предложенном рисунке. До свидания.

Метод подсчёта количества решений

Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.

В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.

Общая форма интересующего нас уравнения:

где n и m — положительные целые числа.

Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.

Нам нужен метод

Давайте начнём с частного случая общего уравнения:

Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):

Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:

и мы сможем подсчитать число решений — m+1.

Это было просто, верно?

Теперь возьмём немного более сложный вариант с тремя переменными, скажем:

С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):

Число решений в этом случае равно 10.

Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.

Значит, нужен эффективный метод.

Разрабатываем метод

Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:

Одним из решений было (5, 0). Давайте преобразуем его в:

Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:

Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:

Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.

В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:

Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.

Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:

где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.

Эта формула обычно записывается в компактной форме как:

Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:

Это то же самое число, что мы получили методом прямого счёта!

Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:

Некоторые решения можно записать в разложенном виде:

В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:

И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:

а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:

как и утверждалось выше.

Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:

Простейшее решение этого уравнения:

Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:

В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).

Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:

Сколько решений может иметь уравнение

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

Найдем матрицу обратную матрице A.

,

Таким образом, x = 3, y = – 1.

Решите матричное уравнение: XA+B=C, где

Выразим искомую матрицу X из заданного уравнения.

Найдем матрицу А -1 .

Решите матричное уравнение AX+B=C, где

Из уравнения получаем .

Следовательно,

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

. Поэтому .

  1. При
  2. При p = 30 получаем систему уравнений которая не имеет решений.
  3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

Вернувшись к системе уравнений, будем иметь

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Вернемся к системе уравнений.

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.


источники:

http://nuancesprog.ru/p/8926/

http://toehelp.ru/theory/math/lecture14/lecture14.html